The role of phase change materials in lithium-ion batteries: A brief review on current materials, thermal management systems, numerical methods, and experimental models

[1]  D. Cao,et al.  Paraffin/polyethylene/graphite composite phase change materials with enhanced thermal conductivity and leakage-proof , 2021, Advanced Composites and Hybrid Materials.

[2]  Md Sazzad Hosen,et al.  A compact and optimized liquid-cooled thermal management system for high power lithium-ion capacitors , 2021 .

[3]  Ruijin Fan,et al.  Thermal management performance of a fin‐enhanced phase change material system for the lithium‐ion battery , 2020, International Journal of Energy Research.

[4]  G. Molaeimanesh,et al.  Impact of system structure on the performance of a hybrid thermal management system for a Li-ion battery module , 2020 .

[5]  Hadi Bashirpour‐Bonab Thermal behavior of lithium batteries used in electric vehicles using phase change materials , 2020, International Journal of Energy Research.

[6]  Ya-Ling He,et al.  Design and operating evaluation of a finned shell-and-tube thermal energy storage unit filled with metal foam , 2020 .

[7]  M. Kiani,et al.  Hybrid thermal management of lithium-ion batteries using nanofluid, metal foam, and phase change material: an integrated numerical–experimental approach , 2020, Journal of Thermal Analysis and Calorimetry.

[8]  I. Dincer,et al.  A thermal performance management system for lithium-ion battery packs , 2020 .

[9]  Zhengguo Zhang,et al.  Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study , 2020 .

[10]  Ravinder Kumar,et al.  Cooling performance of nanofluid submerged vs. nanofluid circulated battery thermal management systems , 2019 .

[11]  M. Shojaeefard,et al.  Numerical evaluation of a thermal management system consisting PCM and porous metal foam for Li-ion batteries , 2019, Journal of Thermal Analysis and Calorimetry.

[12]  Jingwen Weng,et al.  Optimization of the detailed factors in a phase-change-material module for battery thermal management , 2019, International Journal of Heat and Mass Transfer.

[13]  Mehdi Ashjaee,et al.  A novel hybrid thermal management for Li-ion batteries using phase change materials embedded in copper foams combined with forced-air convection , 2019, International Journal of Thermal Sciences.

[14]  Dong Soo Jang,et al.  Simulation on cooling performance characteristics of a refrigerant-cooled active thermal management system for lithium ion batteries , 2019, International Journal of Heat and Mass Transfer.

[15]  M. Siavashi,et al.  Numerical melting performance analysis of a cylindrical thermal energy storage unit using nano-enhanced PCM and multiple horizontal fins , 2019, Numerical Heat Transfer, Part A: Applications.

[16]  Ya-Ling He,et al.  Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube , 2019, Applied Energy.

[17]  M. Shojaeefard,et al.  Improving the performance of a passive battery thermal management system based on PCM using lateral fins , 2019, Heat and Mass Transfer.

[18]  Ravinder Kumar,et al.  Thermal performance of a novel confined flow Li-ion battery module , 2019, Applied Thermal Engineering.

[19]  A. King,et al.  Effect of microstructure on melting in metal-foam/paraffin composite phase change materials , 2018, International Journal of Heat and Mass Transfer.

[20]  Jian Li,et al.  Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy , 2018, Nature Energy.

[21]  Feng Gao,et al.  Literature review on pressure–velocity decoupling algorithms applied to built-environment CFD simulation , 2018, Building and Environment.

[22]  Bernardo Buonomo,et al.  Thermal cooling behaviors of lithium-ion batteries by metal foam with phase change materials , 2018, Energy Procedia.

[23]  Guoqing Zhang,et al.  Experimental investigation of thermal management system for lithium ion batteries module with coupling effect by heat sheets and phase change materials , 2018 .

[24]  Jianqin Zhu,et al.  Performance analysis of a novel thermal management system with composite phase change material for a lithium-ion battery pack , 2018, Energy.

[25]  Guoqing Zhang,et al.  A novel nanosilica-enhanced phase change material with anti-leakage and anti-volume-changes properties for battery thermal management , 2018 .

[26]  M. Agelin-Chaab,et al.  Experimental and numerical studies on air cooling and temperature uniformity in a battery pack , 2018 .

[27]  Deqiu Zou,et al.  Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery , 2018 .

[28]  Jianqiu Li,et al.  Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles , 2018 .

[29]  Christopher Yu Hang Chao,et al.  Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials , 2018 .

[30]  Zhengguo Zhang,et al.  Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures , 2018 .

[31]  G. Fang,et al.  Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage , 2018 .

[32]  Ibrahim Dincer,et al.  A novel phase change based cooling system for prismatic lithium ion batteries. , 2018 .

[33]  Ibrahim Dincer,et al.  Thermal and electrical performance evaluations of series connected Li-ion batteries in a pack with liquid cooling , 2018 .

[34]  Guoqing Zhang,et al.  A thermal management system for rectangular LiFePO4 battery module using novel double copper mesh-enhanced phase change material plates , 2017 .

[35]  Farid Bahiraei,et al.  Experimental and numerical investigation on the performance of carbon-based nanoenhanced phase change materials for thermal management applications , 2017 .

[36]  Jiyun Zhao,et al.  Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review , 2017 .

[37]  Zhi-xia He,et al.  LES investigations on effects of the residual bubble on the single hole diesel injector jet , 2017 .

[38]  Guiwen Jiang,et al.  Experiment and simulation of thermal management for a tube-shell Li-ion battery pack with composite phase change material , 2017 .

[39]  Qilin Guo,et al.  Preparation and thermal properties of short carbon fibers/erythritol phase change materials , 2017 .

[40]  Qingsong Wang,et al.  Experimental study on the application of phase change material in the dynamic cycling of battery pack system , 2016 .

[41]  M. Alipanah,et al.  Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams , 2016 .

[42]  Jason K. Ostanek,et al.  Reducing cell-to-cell spacing for large-format lithium ion battery modules with aluminum or PCM heat sinks under failure conditions , 2016 .

[43]  Na Li,et al.  Heat transfer enhancement of phase change composite material: Copper foam/paraffin , 2016 .

[44]  Farah Souayfane,et al.  Phase change materials (PCM) for cooling applications in buildings: A review , 2016 .

[45]  G. Fang,et al.  Synthesis, characterization and properties of palmitic acid/high density polyethylene/graphene nanoplatelets composites as form-stable phase change materials , 2016 .

[46]  Haiting Wei,et al.  Preparation and characterization of capric-myristic-stearic acid eutectic mixture/modified expanded vermiculite composite as a form-stable phase change material , 2016 .

[47]  Guoqing Zhang,et al.  Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins , 2016 .

[48]  J. Xamán,et al.  Cooling Li-ion batteries of racing solar car by using multiple phase change materials , 2016 .

[49]  Tao Xu,et al.  A capric–palmitic–stearic acid ternary eutectic mixture/expanded graphite composite phase change material for thermal energy storage , 2016 .

[50]  M. Sharifpur,et al.  Influence of ultrasonication energy on the dispersion consistency of Al2O3–glycerol nanofluid based on viscosity data, and model development for the required ultrasonication energy density , 2016 .

[51]  I. Hasegawa,et al.  Anti-inflammatory cyclopentene derivatives from the inner bark of Tabebuia avellanedae. , 2016, Fitoterapia.

[52]  Yves Dube,et al.  A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures , 2016 .

[53]  Rui Zhao,et al.  A review of thermal performance improving methods of lithium ion battery: Electrode modification and thermal management system , 2015 .

[54]  Taylor D. Sparks,et al.  Cold temperature performance of phase change material based battery thermal management systems , 2015, Energy Reports.

[55]  Luisa F. Cabeza,et al.  Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage , 2015 .

[56]  Jiateng Zhao,et al.  Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery , 2015 .

[57]  Guohua Wang,et al.  Status and development of electric vehicle integrated thermal management from BTM to HVAC , 2015 .

[58]  Li Jia,et al.  Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery , 2015 .

[59]  Guofeng Chang,et al.  Experiment and simulation of a LiFePO4 battery pack with a passive thermal management system using composite phase change material and graphite sheets , 2015 .

[60]  Philippe Marty,et al.  Experimental performances of a battery thermal management system using a phase change material , 2014 .

[61]  Zhengguo Zhang,et al.  Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system , 2014 .

[62]  Heesung Park,et al.  A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles , 2013 .

[63]  A. Balandin,et al.  Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries , 2013, 1305.4140.

[64]  Zhonghao Rao,et al.  A review of power battery thermal energy management , 2011 .

[65]  Randy D. Weinstein,et al.  A direct comparison of three different material enhancement methods on the transient thermal response of paraffin phase change material exposed to high heat fluxes , 2011 .

[66]  Dan Zhou,et al.  Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials , 2011 .

[67]  Ibrahim Dincer,et al.  Heat transfer and thermal management of electric vehicle batteries with phase change materials , 2011 .

[68]  Greg F. Naterer,et al.  Heat transfer in phase change materials for thermal management of electric vehicle battery modules , 2010 .

[69]  G. Ziskind,et al.  Melting in a vertical cylindrical tube: Numerical investigation and comparison with experiments , 2010 .

[70]  Mervyn Smyth,et al.  A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins , 2009 .

[71]  Hamid Ait Adine,et al.  Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials , 2009 .

[72]  A. Sharma,et al.  Review on thermal energy storage with phase change materials and applications , 2009 .

[73]  J. Selman,et al.  Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature , 2008 .

[74]  X. Py,et al.  Highly conductive composites made of phase change materials and graphite for thermal storage , 2008 .

[75]  Kamil Kaygusuz,et al.  Thermal energy storage performance of paraffin in a novel tube-in-shell system , 2008 .

[76]  Dennis W. Dees,et al.  Low-temperature study of lithium-ion cells using a LiySn micro-reference electrode , 2007 .

[77]  Bernard Franković,et al.  Analysis of the influence of operating conditions and geometric parameters on heat transfer in water-paraffin shell-and-tube latent thermal energy storage unit , 2006 .

[78]  J. Selman,et al.  Thermal conductivity enhancement of phase change materials using a graphite matrix , 2006 .

[79]  Lv Shilei,et al.  Eutectic mixtures of capric acid and lauric acid applied in building wallboards for heat energy storage , 2006 .

[80]  D. Buddhi,et al.  Numerical heat transfer studies of the fatty acids for different heat exchanger materials on the performance of a latent heat storage system , 2005 .

[81]  A. Sari Eutectic mixtures of some fatty acids for low temperature solar heating applications: Thermal properties and thermal reliability , 2005 .

[82]  A. Sari,et al.  Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications , 2005 .

[83]  S. D. Sharma,et al.  Thermal performance of a solar cooker based on an evacuated tube solar collector with a PCM storage unit , 2005 .

[84]  Katsunori Nagano,et al.  Thermal characteristics of a direct heat exchange system between granules with phase change material and air , 2004 .

[85]  Philip C. Eames,et al.  Thermal regulation of building-integrated photovoltaics using phase change materials , 2004 .

[86]  A. Sari,et al.  Phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as PCM in a latent heat storage system , 2003 .

[87]  J. Fukai,et al.  Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes: experiments and modeling , 2003 .

[88]  A. Sari Thermal reliability test of some fatty acids as PCMs used for solar thermal latent heat storage applications , 2003 .

[89]  Luisa F. Cabeza,et al.  Review on thermal energy storage with phase change: materials, heat transfer analysis and applications , 2003 .

[90]  Y. Wang,et al.  An experimental investigation of the melting process in a rectangular enclosure , 1999 .

[91]  R. Velraj,et al.  Heat transfer enhancement in a latent heat storage system , 1999 .

[92]  A. Mujumdar,et al.  Finite-element analysis of cyclic heat transfer in a shell-and-tube latent heat energy storage exchanger , 1997 .

[93]  Mehmet Esen,et al.  Development of a model compatible with solar assisted cylindrical energy storage tank and variation of stored energy with time for different phase change materials , 1996 .

[94]  A. El-sebaii,et al.  Cooking during off-sunshine hours using PCMs as storage media , 1995 .

[95]  A. Hasan Phase change material energy storage system employing palmitic acid , 1994 .

[96]  M. Lacroix Numerical simulation of a shell-and-tube latent heat thermal energy storage unit , 1993 .

[97]  S. D. Kim,et al.  Heat-transfer characteristics of a latent heat storage system using MgCl2 · 6H2O , 1992 .

[98]  U. Schnell,et al.  Some remarks on the PISO and SIMPLE algorithms for steady turbulent flow problems , 1989 .

[99]  Vaughan R Voller,et al.  ENTHALPY-POROSITY TECHNIQUE FOR MODELING CONVECTION-DIFFUSION PHASE CHANGE: APPLICATION TO THE MELTING OF A PURE METAL , 1988 .

[100]  Majid Siavashi,et al.  Application of SiO2–water nanofluid to enhance oil recovery , 2018, Journal of Thermal Analysis and Calorimetry.

[101]  Yong‐Le Nian,et al.  Study of thermal conductive enhancement mechanism and selection criteria of carbon-additive for composite phase change materials , 2018 .

[102]  M. Siavashi,et al.  Application of nanofluid and optimization of pore size arrangement of heterogeneous porous media to enhance mixed convection inside a two-sided lid-driven cavity , 2018, Journal of Thermal Analysis and Calorimetry.

[103]  Lingjuan Wang,et al.  Hexadecanol/phase change polyurethane composite as form-stable phase change material for thermal energy storage , 2016 .

[104]  Francis Agyenim,et al.  Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array , 2010 .

[105]  Ahmad T. Mayyas,et al.  Thermo-mechanical behaviors of the expanded graphite-phase change material matrix used for thermal management of Li-ion battery packs , 2010 .

[106]  S. Kurajica Phase change materials , 2007 .

[107]  K. Ismail,et al.  Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder , 2001 .

[108]  B. Zivkovic,et al.  An analysis of isothermal phase change of phase change material within rectangular and cylindrical containers , 2001 .

[109]  Mehmet Esen,et al.  Geometric design of solar-aided latent heat store depending on various parameters and phase change materials , 1998 .

[110]  Adel A. Ghoneim,et al.  Comparison of theoretical models of phase-change and sensible heat storage for air and water-based solar heating systems , 1989 .

[111]  A. Abhat Low temperature latent heat thermal energy storage: Heat storage materials , 1983 .