Adaptive Approximate Bayesian Computational Particle Filters for Underwater Terrain Aided Navigation
暂无分享,去创建一个
Camille Palmier | Karim Dahia | Nicolas Merlinge | Pierre Del Moral | Dann Laneuville | Christian Musso | P. Moral | C. Musso | D. Laneuville | Nicolas Merlinge | K. Dahia | Camille Palmier
[1] Petar M. Djuric,et al. Resampling Methods for Particle Filtering: Classification, implementation, and strategies , 2015, IEEE Signal Processing Magazine.
[2] Branko Ristic,et al. Bayesian likelihood-free localisation of a biochemical source using multiple dispersion models , 2014, Signal Process..
[3] Nadia Oudjane. Stabilite et approximations particulaires en filtrage non lineaire application au pistage , 2000 .
[4] P. Protter,et al. The Monte-Carlo method for filtering with discrete-time observations , 2001 .
[5] P. J. Green,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[6] Thomas B. Schön,et al. Marginalized particle filters for mixed linear/nonlinear state-space models , 2005, IEEE Transactions on Signal Processing.
[7] J. Bather,et al. Tracking and data fusion , 2001 .
[8] Christian Musso,et al. Improving Regularised Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.
[9] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[10] Jean-Michel Marin,et al. Approximate Bayesian computational methods , 2011, Statistics and Computing.
[11] Bernard W. Silverman,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[12] Anibal Matos,et al. Survey on advances on terrain based navigation for autonomous underwater vehicles , 2017 .
[13] Jun S. Liu,et al. Sequential Imputations and Bayesian Missing Data Problems , 1994 .
[14] Carlos H. Muravchik,et al. Posterior Cramer-Rao bounds for discrete-time nonlinear filtering , 1998, IEEE Trans. Signal Process..