A priori error estimates for finite element methods with numerical quadrature for nonmonotone nonlinear elliptic problems

The effect of numerical quadrature in finite element methods for solving quasilinear elliptic problems of nonmonotone type is studied. Under similar assumption on the quadrature formula as for linear problems, optimal error estimates in the L2 and the H1 norms are proved. The numerical solution obtained from the finite element method with quadrature formula is shown to be unique for a sufficiently fine mesh. The analysis is valid for both simplicial and rectangular finite elements of arbitrary order. Numerical experiments corroborate the theoretical convergence rates.

[1]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[2]  Assyr Abdulle,et al.  The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs , 2009 .

[3]  Assyr Abdulle,et al.  Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems , 2013, Math. Comput..

[4]  Junping Wang,et al.  Some new error estimates for Ritz-Galerkin methods with minimal regularity assumptions , 1996, Math. Comput..

[5]  Assyr Abdulle,et al.  A priori and a posteriori error analysis for numerical homogenization: a unified framework , 2011 .

[6]  Michel Chipot,et al.  Elliptic Equations: An Introductory Course , 2009, Birkhäuser Advanced Texts Basler Lehrbücher.

[7]  Sergey Korotov,et al.  Finite element analysis of varitional crimes for a quasilinear elliptic problem in 3D , 2000, Numerische Mathematik.

[8]  V. G. Kouznetsova,et al.  Multi-scale computational homogenization: Trends and challenges , 2010, J. Comput. Appl. Math..

[9]  Philippe G. Ciarlet,et al.  THE COMBINED EFFECT OF CURVED BOUNDARIES AND NUMERICAL INTEGRATION IN ISOPARAMETRIC FINITE ELEMENT METHODS , 1972 .

[10]  Miloslav Feistauer,et al.  Finite element solution of nonlinear elliptic problems , 1987 .

[11]  Assyr Abdulle,et al.  The effect of numerical integration in the finite element method for nonmonotone nonlinear elliptic problems with application to numerical homogenization methods , 2011 .

[12]  Michel Chipot,et al.  Uniqueness and Nonuniqueness for the Approximation of Quasilinear Elliptic Equations , 1996 .

[13]  A. H. Schatz,et al.  An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .

[14]  James Serrin,et al.  Uniqueness and comparison theorems for nonlinear elliptic equations in divergence form , 1971 .

[15]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[16]  A. W. Warrick,et al.  Time‐dependent Linearized Infiltration: III. Strip and Disc Sources , 1976 .

[17]  Vassilios A. Dougalis,et al.  The Effect of Quadrature Errors on Finite Element Approximations for Second Order Hyperbolic Equations , 1976 .

[18]  Panagiotis E. Souganidis,et al.  Asymptotic and numerical homogenization , 2008, Acta Numerica.

[19]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[20]  Stefan Hildebrandt,et al.  Constructive proofs of representation theorems in separable Hilbert space , 1964 .

[21]  J. Douglas,et al.  A Galerkin method for a nonlinear Dirichlet problem , 1975 .

[22]  G. Strang VARIATIONAL CRIMES IN THE FINITE ELEMENT METHOD , 1972 .

[23]  I. Hlavácek,et al.  On Galerkin Approximations of a Quasilinear Nonpotential Elliptic Problem of a Nonmonotone Type , 1994 .

[24]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[25]  J. Bear,et al.  Introduction to Modeling of Transport Phenomena in Porous Media , 1990 .

[26]  J. Rappaz,et al.  Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems , 1994 .

[27]  Herbert Amann,et al.  Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .

[28]  L. Nirenberg,et al.  On elliptic partial differential equations , 1959 .

[29]  J. Nitsche,et al.  L∞-convergence of finite element approximations , 1977 .