A priori error estimates for finite element methods with numerical quadrature for nonmonotone nonlinear elliptic problems
暂无分享,去创建一个
[1] P. G. Ciarlet,et al. Basic error estimates for elliptic problems , 1991 .
[2] Assyr Abdulle,et al. The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs , 2009 .
[3] Assyr Abdulle,et al. Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems , 2013, Math. Comput..
[4] Junping Wang,et al. Some new error estimates for Ritz-Galerkin methods with minimal regularity assumptions , 1996, Math. Comput..
[5] Assyr Abdulle,et al. A priori and a posteriori error analysis for numerical homogenization: a unified framework , 2011 .
[6] Michel Chipot,et al. Elliptic Equations: An Introductory Course , 2009, Birkhäuser Advanced Texts Basler Lehrbücher.
[7] Sergey Korotov,et al. Finite element analysis of varitional crimes for a quasilinear elliptic problem in 3D , 2000, Numerische Mathematik.
[8] V. G. Kouznetsova,et al. Multi-scale computational homogenization: Trends and challenges , 2010, J. Comput. Appl. Math..
[9] Philippe G. Ciarlet,et al. THE COMBINED EFFECT OF CURVED BOUNDARIES AND NUMERICAL INTEGRATION IN ISOPARAMETRIC FINITE ELEMENT METHODS , 1972 .
[10] Miloslav Feistauer,et al. Finite element solution of nonlinear elliptic problems , 1987 .
[11] Assyr Abdulle,et al. The effect of numerical integration in the finite element method for nonmonotone nonlinear elliptic problems with application to numerical homogenization methods , 2011 .
[12] Michel Chipot,et al. Uniqueness and Nonuniqueness for the Approximation of Quasilinear Elliptic Equations , 1996 .
[13] A. H. Schatz,et al. An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .
[14] James Serrin,et al. Uniqueness and comparison theorems for nonlinear elliptic equations in divergence form , 1971 .
[15] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[16] A. W. Warrick,et al. Time‐dependent Linearized Infiltration: III. Strip and Disc Sources , 1976 .
[17] Vassilios A. Dougalis,et al. The Effect of Quadrature Errors on Finite Element Approximations for Second Order Hyperbolic Equations , 1976 .
[18] Panagiotis E. Souganidis,et al. Asymptotic and numerical homogenization , 2008, Acta Numerica.
[19] E Weinan,et al. Heterogeneous multiscale methods: A review , 2007 .
[20] Stefan Hildebrandt,et al. Constructive proofs of representation theorems in separable Hilbert space , 1964 .
[21] J. Douglas,et al. A Galerkin method for a nonlinear Dirichlet problem , 1975 .
[22] G. Strang. VARIATIONAL CRIMES IN THE FINITE ELEMENT METHOD , 1972 .
[23] I. Hlavácek,et al. On Galerkin Approximations of a Quasilinear Nonpotential Elliptic Problem of a Nonmonotone Type , 1994 .
[24] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[25] J. Bear,et al. Introduction to Modeling of Transport Phenomena in Porous Media , 1990 .
[26] J. Rappaz,et al. Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems , 1994 .
[27] Herbert Amann,et al. Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .
[28] L. Nirenberg,et al. On elliptic partial differential equations , 1959 .
[29] J. Nitsche,et al. L∞-convergence of finite element approximations , 1977 .