Condensation in disordered lasers: theory, 3D+1 simulations, and experiments.

The complex processes underlying the generation of a coherent emission from the multiple scattering of photons and wave localization in the presence of structural disorder are still mostly unexplored. Here we show that a single nonlinear Schrödinger equation, playing the role of the Schwalow-Townes law for standard lasers, quantitatively reproduces experimental results and three-dimensional time-domain parallel simulations of a colloidal laser system.