Parameter Estimation of Parallel Wiener-Hammerstein Systems by Decoupling their Volterra Representations

Abstract Nonlinear dynamic systems are often approximated by a Volterra series, which is a generalization of the Taylor series for systems with memory. However, the Volterra series lacks physical interpretation. To take advantage of the Volterra representation while aiming for an interpretable block-oriented model, we establish a link between the Volterra representation and the parallel Wiener-Hammerstein model, based on decoupling of multivariate polynomials. The true link is through a constrained decoupling model with (block-)Toeplitz structure on the factors and sets of identical internal branches. The solution of the modified decoupling problem then reveals directly the parameters of the parallel Wiener-Hammerstein model of the system. However, due to the uniqueness properies of the plain decoupling algorithm, even if the structure is not imposed, the method still leads to the true solution (in the exact case).

[1]  Leon O. Chua,et al.  Fading memory and the problem of approximating nonlinear operators with volterra series , 1985 .

[2]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[3]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[4]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[5]  Johan Schoukens,et al.  Modeling Parallel Wiener-Hammerstein Systems Using Tensor Decomposition of Volterra Kernels , 2016, LVA/ICA.

[6]  Koen Tiels,et al.  Identification of block-oriented nonlinear systems starting from linear approximations: A survey , 2016, Autom..

[7]  Gérard Favier,et al.  Toeplitz–Vandermonde Matrix Factorization With Application to Parameter Estimation of Wiener–Hammerstein Systems , 2007, IEEE Signal Processing Letters.

[8]  Przemyslaw Sliwinski,et al.  Aggregative Modeling of Nonlinear Systems , 2015, IEEE Signal Processing Letters.

[9]  Przemyslaw Sliwinski,et al.  Nonlinear system modeling based on constrained Volterra series estimates , 2017, ArXiv.

[10]  Nikos D. Sidiropoulos,et al.  Tensor Decomposition for Signal Processing and Machine Learning , 2016, IEEE Transactions on Signal Processing.

[11]  Johan Schoukens,et al.  Regularized nonparametric Volterra kernel estimation , 2017, Autom..

[12]  Georgios B. Giannakis,et al.  A bibliography on nonlinear system identification , 2001, Signal Process..

[13]  G. Palm,et al.  On representation and approximation of nonlinear systems , 1979, Biological Cybernetics.

[14]  Konstantin Usevich,et al.  Decoupling multivariate polynomials: Interconnections between tensorizations , 2020, J. Comput. Appl. Math..

[15]  Bernhard Schölkopf,et al.  A Unifying View of Wiener and Volterra Theory and Polynomial Kernel Regression , 2006, Neural Computation.

[16]  Heinz Unbehauen,et al.  Structure identification of nonlinear dynamic systems - A survey on input/output approaches , 1990, Autom..

[17]  A. Kibangou,et al.  Nonlinear system modeling and identification using Volterra‐PARAFAC models , 2012 .

[18]  Johan Schoukens,et al.  Decoupling Multivariate Polynomials Using First-Order Information and Tensor Decompositions , 2014, SIAM J. Matrix Anal. Appl..

[19]  Konstantin Usevich,et al.  Low-rank tensor recovery for Jacobian-based Volterra identification of parallel Wiener-Hammerstein systems , 2021, IFAC-PapersOnLine.

[20]  Philippe Dreesen,et al.  Decoupling Multivariate Functions Using Second-Order Information and Tensors , 2018, LVA/ICA.

[21]  Johan Schoukens,et al.  Decoupling Multivariate Polynomials for Nonlinear State-Space Models , 2019, IEEE Control Systems Letters.

[22]  Michael J. Korenberg,et al.  Parallel cascade identification and kernel estimation for nonlinear systems , 2006, Annals of Biomedical Engineering.

[23]  Gérard Favier,et al.  Identification of Parallel-Cascade Wiener Systems Using Joint Diagonalization of Third-Order Volterra Kernel Slices , 2009, IEEE Signal Processing Letters.