Parameter Estimation of Parallel Wiener-Hammerstein Systems by Decoupling their Volterra Representations
暂无分享,去创建一个
[1] Leon O. Chua,et al. Fading memory and the problem of approximating nonlinear operators with volterra series , 1985 .
[2] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[3] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[4] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[5] Johan Schoukens,et al. Modeling Parallel Wiener-Hammerstein Systems Using Tensor Decomposition of Volterra Kernels , 2016, LVA/ICA.
[6] Koen Tiels,et al. Identification of block-oriented nonlinear systems starting from linear approximations: A survey , 2016, Autom..
[7] Gérard Favier,et al. Toeplitz–Vandermonde Matrix Factorization With Application to Parameter Estimation of Wiener–Hammerstein Systems , 2007, IEEE Signal Processing Letters.
[8] Przemyslaw Sliwinski,et al. Aggregative Modeling of Nonlinear Systems , 2015, IEEE Signal Processing Letters.
[9] Przemyslaw Sliwinski,et al. Nonlinear system modeling based on constrained Volterra series estimates , 2017, ArXiv.
[10] Nikos D. Sidiropoulos,et al. Tensor Decomposition for Signal Processing and Machine Learning , 2016, IEEE Transactions on Signal Processing.
[11] Johan Schoukens,et al. Regularized nonparametric Volterra kernel estimation , 2017, Autom..
[12] Georgios B. Giannakis,et al. A bibliography on nonlinear system identification , 2001, Signal Process..
[13] G. Palm,et al. On representation and approximation of nonlinear systems , 1979, Biological Cybernetics.
[14] Konstantin Usevich,et al. Decoupling multivariate polynomials: Interconnections between tensorizations , 2020, J. Comput. Appl. Math..
[15] Bernhard Schölkopf,et al. A Unifying View of Wiener and Volterra Theory and Polynomial Kernel Regression , 2006, Neural Computation.
[16] Heinz Unbehauen,et al. Structure identification of nonlinear dynamic systems - A survey on input/output approaches , 1990, Autom..
[17] A. Kibangou,et al. Nonlinear system modeling and identification using Volterra‐PARAFAC models , 2012 .
[18] Johan Schoukens,et al. Decoupling Multivariate Polynomials Using First-Order Information and Tensor Decompositions , 2014, SIAM J. Matrix Anal. Appl..
[19] Konstantin Usevich,et al. Low-rank tensor recovery for Jacobian-based Volterra identification of parallel Wiener-Hammerstein systems , 2021, IFAC-PapersOnLine.
[20] Philippe Dreesen,et al. Decoupling Multivariate Functions Using Second-Order Information and Tensors , 2018, LVA/ICA.
[21] Johan Schoukens,et al. Decoupling Multivariate Polynomials for Nonlinear State-Space Models , 2019, IEEE Control Systems Letters.
[22] Michael J. Korenberg,et al. Parallel cascade identification and kernel estimation for nonlinear systems , 2006, Annals of Biomedical Engineering.
[23] Gérard Favier,et al. Identification of Parallel-Cascade Wiener Systems Using Joint Diagonalization of Third-Order Volterra Kernel Slices , 2009, IEEE Signal Processing Letters.