Goals and feasibility of the deep space quantum link

In this article, we review the proposed experiments for the Deep Space Quantum Link (DSQL) mission concept aiming to probe gravitational effects on quantum optical systems. Quantum theory and general relativity are the two most successful frameworks we have to describe the universe. These theories have been validated through experimental confirmations in their domains of application— the macroscopic domain for relativity, and the microscopic domain for quantum theory. To date, laboratory experiments conducted in a regime where both theories manifest measurable effects on photons are limited. Satellite platforms enable the transmission of quantum states of light between different inertial frames and over distances impossible to emulate in the laboratory. The DSQL concept proposes simultaneous tests of quantum mechanics and general relativity enabled by quantum optical links to one or more spacecrafts.

[1]  Karl R. Popper,et al.  INDETERMINISM IN QUANTUM PHYSICS AND IN CLASSICAL PHYSICS: PART II* , 1950, The British Journal for the Philosophy of Science.

[2]  S. A. Werner,et al.  Observation of Gravitationally Induced Quantum Interference , 1975 .

[3]  N. D. Birrell,et al.  Quantum fields in curved space , 2007 .

[4]  Lajos Diósi,et al.  A universal master equation for the gravitational violation of quantum mechanics , 1987 .

[5]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[6]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[7]  R. Penrose On Gravity's role in Quantum State Reduction , 1996 .

[8]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[9]  H. Weinfurter,et al.  Violation of Bell's Inequality under Strict Einstein Locality Conditions , 1998, quant-ph/9810080.

[10]  Clifford M. Will,et al.  The Confrontation between General Relativity and Experiment , 2001, Living reviews in relativity.

[11]  N. Gisin,et al.  Long-distance teleportation of qubits at telecommunication wavelengths , 2003, Nature.

[12]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[13]  Rupert Ursin,et al.  Violation of local realism with freedom of choice , 2008, Proceedings of the National Academy of Sciences.

[14]  Caslav Brukner,et al.  General relativistic effects in quantum interference of photons , 2012, 1206.0965.

[15]  Aaron J. Miller,et al.  Detection-loophole-free test of quantum nonlocality, and applications. , 2013, Physical review letters.

[16]  W. Schleich,et al.  Quantum test of the Universality of Free Fall using rubidium and potassium , 2014, The European Physical Journal D.

[17]  T.C.Ralph,et al.  Entanglement decoherence in a gravitational well according to the event formalism , 2014 .

[18]  T. Jennewein,et al.  QEYSSAT: a mission proposal for a quantum receiver in space , 2014, Photonics West - Optoelectronic Materials and Devices.

[19]  Jieping Ye,et al.  A quantum network of clocks , 2013, Nature Physics.

[20]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[21]  A. Zeilinger,et al.  Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. , 2015, Physical review letters.

[22]  E. Knill,et al.  A strong loophole-free test of local realism , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[23]  Jian-Wei Pan,et al.  Ground-to-satellite quantum teleportation , 2017, Nature.

[24]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.

[25]  J. S. BELLt Einstein-Podolsky-Rosen Paradox , 2018 .

[26]  Daniel R. Terno,et al.  Proposal for an Optical Test of the Einstein Equivalence Principle , 2018 .

[27]  Jian-Wei Pan,et al.  Bell Test over Extremely High-Loss Channels: Towards Distributing Entangled Photon Pairs between Earth and the Moon. , 2017, Physical review letters.

[28]  S. Dolinar,et al.  Deep Space Quantum Link , 2018 .

[29]  Cheng-Zhi Peng,et al.  Satellite testing of a gravitationally induced quantum decoherence model , 2019, Science.

[30]  Daniel R. Terno,et al.  Large-scale optical interferometry in general spacetimes , 2019, 1911.05156.

[31]  A. Roura Gravitational Redshift in Quantum-Clock Interferometry , 2018, Physical Review X.

[32]  M. Kasevich,et al.  Atom-Interferometric Test of the Equivalence Principle at the 10^{-12} Level. , 2020, Physical review letters.

[33]  Laboratory Emulation of Lunar-Earth Links for Quantum Optics , 2020 .

[34]  John Rarity,et al.  QUARC: Quantum Research Cubesat - A Constellation for Quantum Communication , 2020, Cryptogr..

[35]  Luca Mazzarella,et al.  Space-borne quantum memories for global quantum communication , 2020 .

[36]  Bei-Lok Hu,et al.  Quantum teleportation and entanglement swapping with long baseline in outer space , 2020, Classical and Quantum Gravity.

[37]  Jasminder S. Sidhu,et al.  Advances in space quantum communications , 2021, IET Quantum Commun..

[38]  The Deep Space Quantum Link: Prospective Fundamental Physics Experiments using Long-Baseline Quantum Optics , 2021, 2111.15591.

[39]  Tom Vergoossen,et al.  Realizing quantum nodes in space for cost-effective, global quantum communication: in-orbit results and next steps , 2021, OPTO.