Multiresolution Methods for Nonmanifold Models

The concept of fairing applied to triangular meshes with irregular connectivity has become more and more important. Previous contributions proposed a variety of fairing operators for manifolds and applied them to the design of multi-resolution representations and editing tools for meshes. In this paper, we generalize these powerful techniques to handle non-manifold models. We propose a method to construct fairing operators for non-manifolds which is based on standard operators for the manifold setting. Furthermore, we describe novel approaches to guarantee volume preservation. We introduce various multi-resolution techniques that allow us to represent, smooth and edit non-manifold models efficiently. Finally, we discuss a semi-automatic feature preservation strategy to retain important model information during the fairing process.

[1]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[2]  Markus Gross,et al.  Fairing of non-manifolds for visualization , 2000 .

[3]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[4]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[5]  Hugues Hoppe,et al.  Efficient implementation of progressive meshes , 1998, Comput. Graph..

[6]  Markus Gross,et al.  Mesh edge detection , 2000 .

[7]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[8]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[9]  Martin Rumpf,et al.  Anisotropic geometric diffusion in surface processing , 2000 .

[10]  Henning Biermann,et al.  Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.

[11]  Karen Lu,et al.  Adaptive Visualization for Interactive Geometric Modeling in Geoscience , 2000, WSCG.

[12]  William E. Lorensen,et al.  Decimation of triangle meshes , 1992, SIGGRAPH.

[13]  Peter Schröder,et al.  Interactive multiresolution mesh editing , 1997, SIGGRAPH.

[14]  Peter Schröder,et al.  Multiresolution signal processing for meshes , 1999, SIGGRAPH.

[15]  Jovan Popovic,et al.  Progressive simplicial complexes , 1997, SIGGRAPH.

[16]  W. Massey A basic course in algebraic topology , 1991 .

[17]  André Guéziec,et al.  Locally Toleranced Surface Simplification , 1999, IEEE Trans. Vis. Comput. Graph..

[18]  Markus H. Gross,et al.  Multiresolution feature extraction for unstructured meshes , 2001, Proceedings Visualization, 2001. VIS '01..

[19]  Julien Berta,et al.  Integrating VR and CAD , 1999, IEEE Computer Graphics and Applications.

[20]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[21]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[22]  Markus H. Gross,et al.  Progressive tetrahedralizations , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).