Phase transitions in systems small enough to be clusters

We analyze peculiarities of phase transitions in small systems. We focus on the formation of a tiny liquid drop in a small N, V, T system, and develop an “extended modified liquid drop” model, which incorporates the effect of the fluctuations relevant for small systems. We compare the predictions for the p−v isotherms and the density profiles with the results of Monte-Carlo simulations of a Lennard-Jones system, and Density Functional Theory.

[1]  S. Yau,et al.  Quasi-planar nucleus structure in apoferritin crystallization , 2000, Nature.

[2]  H. Reiss Methods of thermodynamics , 1965 .

[3]  A. C. Zettlemoyer,et al.  Homogeneous Nucleation Theory , 1974 .

[4]  B. von Issendorff,et al.  Negative heat capacity for a cluster of 147 sodium atoms. , 2001, Physical review letters.

[5]  T. E. Cowan,et al.  Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters , 1999, Nature.

[6]  Robert L. Whetten,et al.  Capillarity theory for the coexistence of liquid and solid clusters , 1988 .

[7]  H. Haberland,et al.  Irregular variations in the melting point of size-selected atomic clusters , 1998, Nature.

[8]  R. Evans The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids , 1979 .

[9]  T. L. Hill,et al.  An Introduction to Statistical Thermodynamics , 1960 .

[10]  Aleksey Vishnyakov and,et al.  Studies of Liquid−Vapor Equilibria, Criticality, and Spinodal Transitions in Nanopores by the Gauge Cell Monte Carlo Simulation Method , 2001 .

[11]  A. Laaksonen,et al.  Nucleation: measurements, theory, and atmospheric applications. , 1995, Annual review of physical chemistry.

[12]  R. Berry Thermodynamics: Size is everything , 1998, Nature.

[13]  J. Katz,et al.  Role of the Model Dependent Translational Volume Scale in the Classical Theory of Nucleation , 1998 .

[14]  J. Barrett Cluster translation and growth in density functional theories of homogeneous nucleation , 1997 .

[15]  A. F. Bakker,et al.  A molecular dynamics simulation of the Lennard‐Jones liquid–vapor interface , 1988 .

[16]  T. L. Hill,et al.  Thermodynamics of Small Systems , 2002 .

[17]  H. Reiss,et al.  Toward a molecular theory of vapor‐phase nucleation. III. Thermodynamic properties of argon clusters from Monte Carlo simulations and a modified liquid drop theory , 1993 .

[18]  Bruce J. Berne,et al.  Computer simulation of the nucleation and thermodynamics of microclusters , 1978 .

[19]  N. B. Wilding Computer simulation of fluid phase transitions , 2001 .

[20]  Yukito Iba EXTENDED ENSEMBLE MONTE CARLO , 2001 .

[21]  H. Reiss,et al.  Simulative determination of kinetic coefficients for nucleation rates , 2001 .

[22]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[23]  Johann Fischer,et al.  Molecular dynamics simulation of the liquid–vapor interface: The Lennard-Jones fluid , 1997 .

[24]  Vladimir G. Baidakov,et al.  Effect of the cut-off radius of the intermolecular potential on phase equilibrium and surface tension in Lennard-Jones systems , 2000 .

[25]  V. Talanquer,et al.  Dynamical density functional theory of gas-liquid nucleation , 1994 .

[26]  D. Oxtoby Homogeneous nucleation: theory and experiment , 1992 .

[27]  A. Yang Free energy for the heterogeneous systems with spherical interfaces , 1983 .

[28]  N. García,et al.  Monte Carlo Calculation of Argon Clusters in Homogeneous Nucleation , 1981 .

[29]  R. C. Weast Handbook of chemistry and physics , 1973 .

[30]  D. Oxtoby,et al.  Nonclassical nucleation theory for the gas-liquid transition , 1988 .

[31]  J. A. Barker,et al.  Physical cluster free energy from liquid‐state perturbation theory , 1974 .

[32]  Andrew Schofield,et al.  Real-Space Imaging of Nucleation and Growth in Colloidal Crystallization , 2001, Science.

[33]  J. Katz,et al.  The thermodynamics of cluster formation in nucleation theory , 1972 .

[34]  K. Gubbins,et al.  A microscopic theory for spherical interfaces: Liquid drops in the canonical ensemble , 1986 .

[35]  D. Frenkel,et al.  Prediction of absolute crystal-nucleation rate in hard-sphere colloids , 2001, Nature.

[36]  K. Laasonen,et al.  Molecular dynamics simulations of gas-liquid nucleation of Lennard-Jones fluid , 2000 .

[37]  K. Gubbins,et al.  Phase separation in confined systems , 1999 .

[38]  P. Tarazona,et al.  Wetting transitions at models of a solid-gas interface , 1983 .

[39]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[40]  Kurt Binder,et al.  “Critical clusters” in a supersaturated vapor: Theory and Monte Carlo simulation , 1980 .

[41]  D. Mcginty Molecular dynamics studies of the properties of small clusters of argon atoms , 1973 .

[42]  D. Oxtoby,et al.  Gas–liquid nucleation in Lennard‐Jones fluids , 1991 .

[43]  Richard J. Saykally,et al.  Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition , 1997 .

[44]  A. Yang The thermodynamical stability of the heterogeneous system with a spherical interface , 1985 .