Sparse Uncorrelated Linear Discriminant Analysis for Undersampled Problems

Linear discriminant analysis (LDA) as a well-known supervised dimensionality reduction method has been widely applied in many fields. However, the lack of sparsity in the LDA solution makes interpretation of the results challenging. In this paper, we propose a new model for sparse uncorrelated LDA (ULDA). Our model is based on the characterization of all solutions of the generalized ULDA. We incorporate sparsity into the ULDA transformation by seeking the solution with minimum ℓ1-norm from all minimum dimension solutions of the generalized ULDA. The problem is then formulated as an ℓ1-minimization problem with orthogonality constraint. To solve this problem, we devise two algorithms: 1) by applying the linearized alternating direction method of multipliers and 2) by applying the accelerated linearized Bregman method. Simulation studies and high-dimensional real data examples demonstrate that our algorithms not only compute extremely sparse solutions but also perform well in classification.

[1]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[2]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[3]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[4]  Jing-Yu Yang,et al.  Face recognition based on the uncorrelated discriminant transformation , 2001, Pattern Recognit..

[5]  J. Friedman Regularized Discriminant Analysis , 1989 .

[6]  S. Dudoit,et al.  Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .

[7]  Mohammed Bellalij,et al.  The Trace Ratio Optimization Problem for Dimensionality Reduction , 2010, SIAM J. Matrix Anal. Appl..

[8]  Delin Chu,et al.  A New and Fast Orthogonal Linear Discriminant Analysis on Undersampled Problems , 2010, SIAM J. Sci. Comput..

[9]  Jieping Ye,et al.  A two-stage linear discriminant analysis via QR-decomposition , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Wotao Yin,et al.  Analysis and Generalizations of the Linearized Bregman Method , 2010, SIAM J. Imaging Sci..

[11]  Michael K. Ng,et al.  Sparse Orthogonal Linear Discriminant Analysis , 2012, SIAM J. Sci. Comput..

[12]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[13]  Haesun Park,et al.  Equivalence of Several Two-Stage Methods for Linear Discriminant Analysis , 2004, SDM.

[14]  Jieping Ye,et al.  Least squares linear discriminant analysis , 2007, ICML '07.

[15]  Delin Chu,et al.  Sparse Uncorrelated Linear Discriminant Analysis , 2013, ICML.

[16]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[17]  Lei-Hong Zhang,et al.  Uncorrelated trace ratio linear discriminant analysis for undersampled problems , 2011, Pattern Recognit. Lett..

[18]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[19]  Yin Zhang,et al.  An Alternating Direction Algorithm for Nonnegative Matrix Factorization , 2010 .

[20]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[22]  George Karypis,et al.  Empirical and Theoretical Comparisons of Selected Criterion Functions for Document Clustering , 2004, Machine Learning.

[23]  Jieping Ye,et al.  Characterization of a Family of Algorithms for Generalized Discriminant Analysis on Undersampled Problems , 2005, J. Mach. Learn. Res..

[24]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[25]  Jian Yang,et al.  Sparse Representation Classifier Steered Discriminative Projection With Applications to Face Recognition , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[26]  Jieping Ye,et al.  Feature Reduction via Generalized Uncorrelated Linear Discriminant Analysis , 2006, IEEE Transactions on Knowledge and Data Engineering.

[27]  Jian Yang,et al.  Sparse Tensor Discriminant Color Space for Face Verification , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[28]  Haesun Park,et al.  Generalizing discriminant analysis using the generalized singular value decomposition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Dong Xu,et al.  Trace Ratio vs. Ratio Trace for Dimensionality Reduction , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[31]  Y. Zhang,et al.  Augmented Lagrangian alternating direction method for matrix separation based on low-rank factorization , 2014, Optim. Methods Softw..

[32]  Gérard Govaert,et al.  An Efficient Approach to Sparse Linear Discriminant Analysis , 2012, ICML.

[33]  Shuicheng Yan,et al.  Active Subspace: Toward Scalable Low-Rank Learning , 2012, Neural Computation.

[34]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[35]  Shiqian Ma,et al.  Accelerated Linearized Bregman Method , 2011, J. Sci. Comput..

[36]  Haesun Park,et al.  A comparison of generalized linear discriminant analysis algorithms , 2008, Pattern Recognit..

[37]  Xihong Lin,et al.  Sparse linear discriminant analysis for simultaneous testing for the significance of a gene set/pathway and gene selection , 2009, Bioinform..

[38]  Ja-Chen Lin,et al.  A new LDA-based face recognition system which can solve the small sample size problem , 1998, Pattern Recognit..

[39]  Trevor J. Hastie,et al.  Sparse Discriminant Analysis , 2011, Technometrics.

[40]  Shai Avidan,et al.  Generalized spectral bounds for sparse LDA , 2006, ICML.

[41]  Trevor Hastie,et al.  Regularized linear discriminant analysis and its application in microarrays. , 2007, Biostatistics.

[42]  Murat Dundar,et al.  Sparse Fisher Discriminant Analysis for Computer Aided Detection , 2005, SDM.

[43]  R. Tibshirani,et al.  Penalized classification using Fisher's linear discriminant , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[44]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[45]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[46]  Jian Yang,et al.  Why can LDA be performed in PCA transformed space? , 2003, Pattern Recognit..

[47]  Jian-Feng Cai,et al.  Convergence of the linearized Bregman iteration for ℓ1-norm minimization , 2009, Math. Comput..

[48]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[49]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[50]  Jianzhong Li,et al.  A stable gene selection in microarray data analysis , 2006, BMC Bioinformatics.

[51]  Haesun Park,et al.  Structure Preserving Dimension Reduction for Clustered Text Data Based on the Generalized Singular Value Decomposition , 2003, SIAM J. Matrix Anal. Appl..

[52]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[53]  Delin Chu,et al.  A new and fast implementation for null space based linear discriminant analysis , 2010, Pattern Recognit..

[54]  Xiaoyan Wang,et al.  Regularized orthogonal linear discriminant analysis , 2012, Pattern Recognit..

[55]  Yeung Sam Hung,et al.  Characterization of All Solutions for Undersampled Uncorrelated Linear Discriminant Analysis Problems , 2011, SIAM J. Matrix Anal. Appl..

[56]  Jing-Yu Yang,et al.  A generalized Foley-Sammon transform based on generalized fisher discriminant criterion and its application to face recognition , 2003, Pattern Recognit. Lett..

[57]  Ellen M. Voorhees Text REtrieval Conference (TREC) , 2017 .

[58]  Marcel Dettling,et al.  BagBoosting for tumor classification with gene expression data , 2004, Bioinform..

[59]  Michael K. Ng,et al.  Fast Algorithms for the Generalized Foley-Sammon Discriminant Analysis , 2010, SIAM J. Matrix Anal. Appl..