Concatenated Quantum Codes Constructible in Polynomial Time: Efficient Decoding and Error Correction
暂无分享,去创建一个
[1] Henning Stichtenoth. Transitive and Self-dual Codes Attaining the Tsfasman-Vladut-Zink Bound , 2005 .
[2] M. Hamada. Information rates achievable with algebraic codes on quantum discrete memoryless channels , 2005, IEEE Transactions on Information Theory.
[3] R. Werner,et al. Tema con variazioni: quantum channel capacity , 2003, quant-ph/0311037.
[4] A. D. Wyner,et al. The wire-tap channel , 1975, The Bell System Technical Journal.
[5] S. Litsyn,et al. Asymptotically Good Quantum Codes , 2000, quant-ph/0006061.
[6] Mitsuru Hamada,et al. Conjugate codes and applications to cryptography , 2006 .
[7] S. G. Vladut,et al. Algebraic-Geometric Codes , 1991 .
[8] Mitsuru Hamada,et al. Quotient Codes and Their Reliability , 2005 .
[9] Igor Devetak. The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.
[10] Kenneth W. Shum,et al. A low-complexity algorithm for the construction of algebraic-geometric codes better than the Gilbert-Varshamov bound , 2001, IEEE Trans. Inf. Theory.
[11] Chaoping Xing,et al. Asymptotic bounds on quantum codes from algebraic geometry codes , 2006, IEEE Transactions on Information Theory.
[12] Mikhail N. Vyalyi,et al. Classical and Quantum Computation , 2002, Graduate studies in mathematics.
[13] Henning Stichtenoth,et al. Transitive and self-dual codes attaining the Tsfasman-Vla/spl breve/dut$80-Zink bound , 2006, IEEE Transactions on Information Theory.
[14] O. Antoine,et al. Theory of Error-correcting Codes , 2022 .
[15] A. Calderbank,et al. Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.
[16] Ryutaroh Matsumoto,et al. Improvement of Ashikhmin-Litsyn-Tsfasman bound for quantum codes , 2002, Proceedings IEEE International Symposium on Information Theory,.
[17] Gérard D. Cohen,et al. On binary constructions of quantum codes , 1999, IEEE Trans. Inf. Theory.
[18] David J. C. MacKay,et al. Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.
[19] Rudolf Lide,et al. Finite fields , 1983 .
[20] Andrew M. Steane. Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.
[21] H. Stichtenoth,et al. On the Asymptotic Behaviour of Some Towers of Function Fields over Finite Fields , 1996 .
[22] Tom Høholdt,et al. An explicit construction of a sequence of codes attaining the Tsfasman-Vladut-Zink bound: The first steps , 1997, IEEE Trans. Inf. Theory.
[23] Abraham Lempel,et al. Factorization of Symmetric Matrices and Trace-Orthogonal Bases in Finite Fields , 1980, SIAM J. Comput..
[24] H. Fujita. Several Classes of Concatenated Quantum Codes: Constructions and Bounds , 2006, quant-ph/0608063.
[25] Alexei E. Ashikhmin,et al. Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.
[26] Henning Stichtenoth,et al. Algebraic function fields and codes , 1993, Universitext.
[27] N. J. A. Sloane,et al. Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.
[28] A. Steane. Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[29] G. David Forney,et al. Concatenated codes , 2009, Scholarpedia.
[30] Douglas A. Leonard,et al. Finding the defining functions for one-point algebraic-geometry codes , 2001, IEEE Trans. Inf. Theory.
[31] Mitsuru Hamada,et al. Conjugate Codes for Secure and Reliable Information Transmission , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Chengdu.
[32] Hao Chen,et al. Asymptotically good quantum codes exceeding the Ashikhmin-Litsyn-Tsfasman bound , 2001, IEEE Trans. Inf. Theory.
[33] N. Sloane,et al. Quantum Error Correction Via Codes Over GF , 1998 .
[34] V. D. Goppa. Codes on Algebraic Curves , 1981 .
[35] H. Stichtenoth,et al. A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound , 1995 .
[36] Gottesman. Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[37] Shor,et al. Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.
[38] I. Devetak,et al. The private classical information capacity and quantum information capacity of a quantum channel , 2003 .
[39] Shor,et al. Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[40] Mitsuru Hamada. Reliability of Calderbank-Shor-Steane codes and security of quantum key distribution , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[41] R. Cleve,et al. Efficient computations of encodings for quantum error correction , 1996, quant-ph/9607030.
[42] Mitsuru Hamada,et al. Constructive Conjugate Codes for Quantum Error Correction and Cryptography , 2007, ArXiv.
[43] Fujita Hachiro. Several Classes of Concatenated Quantum Codes: Constructions and Bounds , 2006 .