Concatenated Quantum Codes Constructible in Polynomial Time: Efficient Decoding and Error Correction

A method for concatenating quantum error-correcting codes is presented. The method is applicable to a wide class of quantum error-correcting codes known as Calderbank-Shor-Steane (CSS) codes. As a result, codes that achieve a high rate in the Shannon-theoretic sense and that are decodable in polynomial time are presented. The rate is the highest among those known to be achievable by CSS codes. Moreover, the best known lower bound on the greatest minimum distance of codes constructible in polynomial time is improved for a wide range.

[1]  Henning Stichtenoth Transitive and Self-dual Codes Attaining the Tsfasman-Vladut-Zink Bound , 2005 .

[2]  M. Hamada Information rates achievable with algebraic codes on quantum discrete memoryless channels , 2005, IEEE Transactions on Information Theory.

[3]  R. Werner,et al.  Tema con variazioni: quantum channel capacity , 2003, quant-ph/0311037.

[4]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[5]  S. Litsyn,et al.  Asymptotically Good Quantum Codes , 2000, quant-ph/0006061.

[6]  Mitsuru Hamada,et al.  Conjugate codes and applications to cryptography , 2006 .

[7]  S. G. Vladut,et al.  Algebraic-Geometric Codes , 1991 .

[8]  Mitsuru Hamada,et al.  Quotient Codes and Their Reliability , 2005 .

[9]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[10]  Kenneth W. Shum,et al.  A low-complexity algorithm for the construction of algebraic-geometric codes better than the Gilbert-Varshamov bound , 2001, IEEE Trans. Inf. Theory.

[11]  Chaoping Xing,et al.  Asymptotic bounds on quantum codes from algebraic geometry codes , 2006, IEEE Transactions on Information Theory.

[12]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[13]  Henning Stichtenoth,et al.  Transitive and self-dual codes attaining the Tsfasman-Vla/spl breve/dut$80-Zink bound , 2006, IEEE Transactions on Information Theory.

[14]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[15]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[16]  Ryutaroh Matsumoto,et al.  Improvement of Ashikhmin-Litsyn-Tsfasman bound for quantum codes , 2002, Proceedings IEEE International Symposium on Information Theory,.

[17]  Gérard D. Cohen,et al.  On binary constructions of quantum codes , 1999, IEEE Trans. Inf. Theory.

[18]  David J. C. MacKay,et al.  Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.

[19]  Rudolf Lide,et al.  Finite fields , 1983 .

[20]  Andrew M. Steane Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.

[21]  H. Stichtenoth,et al.  On the Asymptotic Behaviour of Some Towers of Function Fields over Finite Fields , 1996 .

[22]  Tom Høholdt,et al.  An explicit construction of a sequence of codes attaining the Tsfasman-Vladut-Zink bound: The first steps , 1997, IEEE Trans. Inf. Theory.

[23]  Abraham Lempel,et al.  Factorization of Symmetric Matrices and Trace-Orthogonal Bases in Finite Fields , 1980, SIAM J. Comput..

[24]  H. Fujita Several Classes of Concatenated Quantum Codes: Constructions and Bounds , 2006, quant-ph/0608063.

[25]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[26]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[27]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[28]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  G. David Forney,et al.  Concatenated codes , 2009, Scholarpedia.

[30]  Douglas A. Leonard,et al.  Finding the defining functions for one-point algebraic-geometry codes , 2001, IEEE Trans. Inf. Theory.

[31]  Mitsuru Hamada,et al.  Conjugate Codes for Secure and Reliable Information Transmission , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Chengdu.

[32]  Hao Chen,et al.  Asymptotically good quantum codes exceeding the Ashikhmin-Litsyn-Tsfasman bound , 2001, IEEE Trans. Inf. Theory.

[33]  N. Sloane,et al.  Quantum Error Correction Via Codes Over GF , 1998 .

[34]  V. D. Goppa Codes on Algebraic Curves , 1981 .

[35]  H. Stichtenoth,et al.  A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound , 1995 .

[36]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[37]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[38]  I. Devetak,et al.  The private classical information capacity and quantum information capacity of a quantum channel , 2003 .

[39]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[40]  Mitsuru Hamada Reliability of Calderbank-Shor-Steane codes and security of quantum key distribution , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[41]  R. Cleve,et al.  Efficient computations of encodings for quantum error correction , 1996, quant-ph/9607030.

[42]  Mitsuru Hamada,et al.  Constructive Conjugate Codes for Quantum Error Correction and Cryptography , 2007, ArXiv.

[43]  Fujita Hachiro Several Classes of Concatenated Quantum Codes: Constructions and Bounds , 2006 .