Recurrent Cartesian Genetic Programming

This paper formally introduces Recurrent Cartesian Genetic Programming (RCGP), an extension to Cartesian Genetic Programming (CGP) which allows recurrent connections. The presence of recurrent connections enables RCGP to be successfully applied to partially observable tasks. It is found that RCGP significantly outperforms CGP on two partially observable tasks: artificial ant and sunspot prediction. The paper also introduces a new parameter, recurrent connection probability, which biases the number of recurrent connections created via mutation. Suitable choices of this parameter significantly improve the effectiveness of RCGP.

[1]  Julian Francis Miller,et al.  Parallel evolution using multi-chromosome cartesian genetic programming , 2009, Genetic Programming and Evolvable Machines.

[2]  D. E. Smith,et al.  History of Mathematics , 1924, Nature.

[3]  William F. Punch,et al.  Length bias and search limitations in cartesian genetic programming , 2013, GECCO '13.

[4]  Julian Francis Miller,et al.  Cartesian genetic programming encoded artificial neural networks: a comparison using three benchmarks , 2013, GECCO '13.

[5]  Astro Teller,et al.  Turing completeness in the language of genetic programming with indexed memory , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[6]  Julian Francis Miller,et al.  Through the Interaction of Neutral and Adaptive Mutations, Evolutionary Search Finds a Way , 2006, Artificial Life.

[7]  Julian Francis Miller,et al.  The Advantages of Landscape Neutrality in Digital Circuit Evolution , 2000, ICES.

[8]  Sanyou Zeng,et al.  Evolvable Systems: From Biology to Hardware, 7th International Conference, ICES 2007, Wuhan, China, September 21-23, 2007, Proceedings , 2007, ICES.

[9]  Malcolm I. Heywood,et al.  Learning recursive programs with cooperative coevolution of genetic code mapping and genotype , 2007, GECCO '07.

[10]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[11]  M. Nishiguchi,et al.  Evolution of recursive programs with multi-niche genetic programming (mnGP) , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[12]  Riccardo Poli,et al.  Why Ants are Hard , 1998 .

[13]  Gul Muhammad Khan,et al.  Fast learning neural networks using Cartesian genetic programming , 2013, Neurocomputing.

[14]  Michael I. Jordan Serial Order: A Parallel Distributed Processing Approach , 1997 .

[15]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[16]  Julian Francis Miller,et al.  Introducing a cross platform open source Cartesian Genetic Programming library , 2014, Genetic Programming and Evolvable Machines.

[17]  Ernesto Costa,et al.  Dynamic limits for bloat control in genetic programming and a review of past and current bloat theories , 2009, Genetic Programming and Evolvable Machines.

[18]  Simon M. Lucas,et al.  Learning Recursive Functions with Object Oriented Genetic Programming , 2006, EuroGP.

[19]  Julian Francis Miller,et al.  Cartesian genetic programming , 2000, GECCO '10.

[20]  Julian F. Miller,et al.  What bloat? Cartesian Genetic Programming on Boolean problems , 2003 .

[21]  Julian Francis Miller,et al.  Redundancy and computational efficiency in Cartesian genetic programming , 2006, IEEE Transactions on Evolutionary Computation.

[22]  Julian Francis Miller,et al.  Predicting Prime Numbers Using Cartesian Genetic Programming , 2007, EuroGP.

[23]  Mehdi Khashei,et al.  An artificial neural network (p, d, q) model for timeseries forecasting , 2010, Expert Syst. Appl..

[24]  Julian Francis Miller,et al.  Neutrality and the Evolvability of Boolean Function Landscape , 2001, EuroGP.

[25]  Gul Muhammad Khan,et al.  Efficient representation of Recurrent Neural Networks for markovian/non-markovian non-linear control problems , 2010, 2010 10th International Conference on Intelligent Systems Design and Applications.

[26]  Venu Govindaraju,et al.  Recurrent genetic programming , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[27]  Julian Francis Miller,et al.  Cartesian Genetic Programming: Why No Bloat? , 2014, EuroGP.

[28]  Lukás Sekanina,et al.  Evolution of Iterative Formulas Using Cartesian Genetic Programming , 2011, KES.