Quantum Hydrodynamic and Diffusion Models Derived from the Entropy Principle

In these notes, we review the recent theory of quantum hydrodynamic and diffusion models derived from the entropy minimization principle. These models are obtained by taking the moments of a collisional Wigner equation and closing the resulting system of equations by a quantum equilibrium. Such an equilibrium is defined as a minimizer of the quantum entropy subject to local constraints of given moments. We provide a framework to develop this minimization approach and successively apply it to quantum hydrodynamic models and quantum diffusion models. The results of numerical simulations show that these models capture well the various features of quantum transport.

[1]  On stationary Schrödinger–Poisson equations modelling an electron gas with reduced dimension , 1997 .

[2]  Schrödinger-Poisson systems in dimension d ≦ 3: The whole-space case , 1993 .

[3]  Zhouping Xin,et al.  Mathematical modelling of microelectronics semiconductor devices , 2000 .

[4]  Carl L. Gardner,et al.  The Quantum Hydrodynamic Model for Semiconductor Devices , 1994, SIAM J. Appl. Math..

[5]  Christian A. Ringhofer,et al.  The Chapman-Enskog Expansion and the Quantum Hydrodynamic Model for Semiconductor Devices , 2000, VLSI Design.

[6]  Pierre Degond,et al.  A Note on quantum moment hydrodynamics and the entropy principle , 2002 .

[7]  Ingenuin Gasser,et al.  Closure conditions for classical and quantum moment hierarchies in the small-temperature limit , 1996 .

[8]  P. Degond,et al.  An energy-transport model for semiconductors derived from the Boltzmann equation , 1996 .

[9]  V. Morozov,et al.  Statistical mechanics of nonequilibrium processes , 1996 .

[10]  Pierre Degond,et al.  Quantum Moment Hydrodynamics and the Entropy Principle , 2003 .

[11]  A. Pirovano,et al.  Two-dimensional quantum effects in nanoscale MOSFETs , 2002 .

[12]  Juan Soler,et al.  An Analysis of Quantum Fokker-Planck Models: A Wigner Function Approach , 2004 .

[13]  G. Iafrate,et al.  Quantum correction to the equation of state of an electron gas in a semiconductor. , 1989, Physical review. B, Condensed matter.

[14]  Norbert J. Mauser,et al.  Mean field dynamics of fermions and the time-dependent Hartree-Fock equation , 2002 .

[15]  I. Burghardt,et al.  Quantum dynamics for dissipative systems: A hydrodynamic perspective , 2002 .

[16]  Pierre Degond,et al.  An entropic quantum drift-diffusion model for electron transport in resonant tunneling diodes , 2007, J. Comput. Phys..

[17]  F. Nier A Stationary Schrödinger-Poisson System Arising from the Modelling of Electronic Devices , 1990 .

[18]  Ansgar Jüngel,et al.  A Positivity-Preserving Numerical Scheme for a Nonlinear Fourth Order Parabolic System , 2001, SIAM J. Numer. Anal..

[19]  Andrea L. Lacaita,et al.  Quantum-corrected drift-diffusion models for transport in semiconductor devices , 2005 .

[20]  R. Dreizler,et al.  Density-Functional Theory , 1990 .

[21]  R. Wyatt,et al.  Quantum Wave Packet Dynamics with Trajectories , 1999 .

[22]  Andreas Unterreiter,et al.  The Stationary Current { VoltageCharacteristics of the Quantum DriftDi usion ModelRen , 1999 .

[23]  Ren-Chuen Chen,et al.  A quantum corrected energy-transport model for nanoscale semiconductor devices , 2005 .

[24]  G. Parlant,et al.  On the dynamics of coupled Bohmian and phase-space variables: a new hybrid quantum-classical approach. , 2004, The Journal of chemical physics.

[25]  René Pinnau,et al.  The Linearized Transient Quantum Drift Diffusion Model — Stability of Stationary States , 2000 .

[26]  Stefano Micheletti,et al.  Numerical Simulation of Resonant Tunneling Diodes with a Quantum-Drift-Diffusion Model , 2004 .

[27]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[28]  Florian Méhats,et al.  Numerical approximation of a quantum drift-diffusion model , 2004 .

[29]  L. Cederbaum,et al.  Hydrodynamic equations for mixed quantum states. I. General formulation , 2001 .

[30]  Gardner,et al.  Smooth quantum potential for the hydrodynamic model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  E. Bittner,et al.  Quantum Dissipation in the Hydrodynamic Moment Hierarchy: A Semiclassical Truncation Strategy † , 2002 .

[32]  A. Unterreiter,et al.  On the stationary quantum drift-diffusion model , 1998 .

[33]  Pierre Degond,et al.  Isothermal Quantum Hydrodynamics: Derivation, Asymptotic Analysis, and Simulation , 2007, Multiscale Model. Simul..

[34]  Pierre Degond,et al.  Quantum Energy-Transport and Drift-Diffusion Models , 2005 .

[35]  C. D. Levermore,et al.  Moment closure hierarchies for kinetic theories , 1996 .

[36]  Norbert J. Mauser,et al.  THE CLASSICAL LIMIT OF A SELF-CONSISTENT QUANTUM-VLASOV EQUATION IN 3D , 1993 .

[37]  F. Nier A variational formulation of schrödinger-poisson systems in dimension d ≤ 3 , 1993 .

[38]  Christian A. Ringhofer,et al.  A Wignerfunction Approach to Phonon Scattering , 1999, VLSI Design.

[39]  H. Spohn Large Scale Dynamics of Interacting Particles , 1991 .

[40]  E Weinan,et al.  Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics , 1996 .

[41]  Pierre Degond,et al.  On a hierarchy of macroscopic models for semiconductors , 1996 .

[42]  Morozov,et al.  Zubarev's method of a nonequilibrium statistical operator and some challenges in the theory of irreversible processes , 1998 .

[43]  Pierre Degond,et al.  Quantum Hydrodynamic models derived from the entropy principle , 2003 .

[44]  M. G. Ancona DIFFUSION‐DRIFT MODELING OF STRONG INVERSION LAYERS , 1987 .

[45]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[46]  Florian Méhats,et al.  Entropic Discretization of a Quantum Drift-Diffusion Model , 2005, SIAM J. Numer. Anal..

[47]  M. Fischetti Theory of electron transport in small semiconductor devices using the Pauli master equation , 1998 .

[48]  Accuracy of the Time-Dependent Hartree–Fock Approximation for Uncorrelated Initial States , 2003, math-ph/0303070.

[49]  R. Wyatt,et al.  Quantum wave packet dynamics with trajectories: Implementation with adaptive Lagrangian grids , 2000 .

[50]  Ansgar Jüngel,et al.  A derivation of the isothermal quantum hydrodynamic equations using entropy minimization , 2005 .

[51]  T. Paul,et al.  Sur les mesures de Wigner , 1993 .

[52]  M. Ancona,et al.  Macroscopic physics of the silicon inversion layer. , 1987, Physical review. B, Condensed matter.

[53]  F. Bouchut ON ZERO PRESSURE GAS DYNAMICS , 1996 .

[54]  Ansgar Jüngel,et al.  Derivation of New Quantum Hydrodynamic Equations Using Entropy Minimization , 2006, SIAM J. Appl. Math..

[55]  P. Markowich,et al.  Quantum hydrodynamics, Wigner transforms, the classical limit , 1997 .

[56]  P. Argyres Quantum kinetic equations for electrons in high electric and phonon fields , 1992 .

[57]  Y. Brenier,et al.  Sticky Particles and Scalar Conservation Laws , 1998 .

[58]  François Golse,et al.  Weak Copling Limit of the N-Particle Schrödinger Equation , 2000 .