Quantum Hydrodynamic and Diffusion Models Derived from the Entropy Principle
暂无分享,去创建一个
Pierre Degond | Florian Méhats | Samy Gallego | Christian Ringhofer | P. Degond | C. Ringhofer | F. Méhats | S. Gallego
[1] On stationary Schrödinger–Poisson equations modelling an electron gas with reduced dimension , 1997 .
[2] Schrödinger-Poisson systems in dimension d ≦ 3: The whole-space case , 1993 .
[3] Zhouping Xin,et al. Mathematical modelling of microelectronics semiconductor devices , 2000 .
[4] Carl L. Gardner,et al. The Quantum Hydrodynamic Model for Semiconductor Devices , 1994, SIAM J. Appl. Math..
[5] Christian A. Ringhofer,et al. The Chapman-Enskog Expansion and the Quantum Hydrodynamic Model for Semiconductor Devices , 2000, VLSI Design.
[6] Pierre Degond,et al. A Note on quantum moment hydrodynamics and the entropy principle , 2002 .
[7] Ingenuin Gasser,et al. Closure conditions for classical and quantum moment hierarchies in the small-temperature limit , 1996 .
[8] P. Degond,et al. An energy-transport model for semiconductors derived from the Boltzmann equation , 1996 .
[9] V. Morozov,et al. Statistical mechanics of nonequilibrium processes , 1996 .
[10] Pierre Degond,et al. Quantum Moment Hydrodynamics and the Entropy Principle , 2003 .
[11] A. Pirovano,et al. Two-dimensional quantum effects in nanoscale MOSFETs , 2002 .
[12] Juan Soler,et al. An Analysis of Quantum Fokker-Planck Models: A Wigner Function Approach , 2004 .
[13] G. Iafrate,et al. Quantum correction to the equation of state of an electron gas in a semiconductor. , 1989, Physical review. B, Condensed matter.
[14] Norbert J. Mauser,et al. Mean field dynamics of fermions and the time-dependent Hartree-Fock equation , 2002 .
[15] I. Burghardt,et al. Quantum dynamics for dissipative systems: A hydrodynamic perspective , 2002 .
[16] Pierre Degond,et al. An entropic quantum drift-diffusion model for electron transport in resonant tunneling diodes , 2007, J. Comput. Phys..
[17] F. Nier. A Stationary Schrödinger-Poisson System Arising from the Modelling of Electronic Devices , 1990 .
[18] Ansgar Jüngel,et al. A Positivity-Preserving Numerical Scheme for a Nonlinear Fourth Order Parabolic System , 2001, SIAM J. Numer. Anal..
[19] Andrea L. Lacaita,et al. Quantum-corrected drift-diffusion models for transport in semiconductor devices , 2005 .
[20] R. Dreizler,et al. Density-Functional Theory , 1990 .
[21] R. Wyatt,et al. Quantum Wave Packet Dynamics with Trajectories , 1999 .
[22] Andreas Unterreiter,et al. The Stationary Current { VoltageCharacteristics of the Quantum DriftDi usion ModelRen , 1999 .
[23] Ren-Chuen Chen,et al. A quantum corrected energy-transport model for nanoscale semiconductor devices , 2005 .
[24] G. Parlant,et al. On the dynamics of coupled Bohmian and phase-space variables: a new hybrid quantum-classical approach. , 2004, The Journal of chemical physics.
[25] René Pinnau,et al. The Linearized Transient Quantum Drift Diffusion Model — Stability of Stationary States , 2000 .
[26] Stefano Micheletti,et al. Numerical Simulation of Resonant Tunneling Diodes with a Quantum-Drift-Diffusion Model , 2004 .
[27] Car,et al. Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.
[28] Florian Méhats,et al. Numerical approximation of a quantum drift-diffusion model , 2004 .
[29] L. Cederbaum,et al. Hydrodynamic equations for mixed quantum states. I. General formulation , 2001 .
[30] Gardner,et al. Smooth quantum potential for the hydrodynamic model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[31] E. Bittner,et al. Quantum Dissipation in the Hydrodynamic Moment Hierarchy: A Semiclassical Truncation Strategy † , 2002 .
[32] A. Unterreiter,et al. On the stationary quantum drift-diffusion model , 1998 .
[33] Pierre Degond,et al. Isothermal Quantum Hydrodynamics: Derivation, Asymptotic Analysis, and Simulation , 2007, Multiscale Model. Simul..
[34] Pierre Degond,et al. Quantum Energy-Transport and Drift-Diffusion Models , 2005 .
[35] C. D. Levermore,et al. Moment closure hierarchies for kinetic theories , 1996 .
[36] Norbert J. Mauser,et al. THE CLASSICAL LIMIT OF A SELF-CONSISTENT QUANTUM-VLASOV EQUATION IN 3D , 1993 .
[37] F. Nier. A variational formulation of schrödinger-poisson systems in dimension d ≤ 3 , 1993 .
[38] Christian A. Ringhofer,et al. A Wignerfunction Approach to Phonon Scattering , 1999, VLSI Design.
[39] H. Spohn. Large Scale Dynamics of Interacting Particles , 1991 .
[40] E Weinan,et al. Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics , 1996 .
[41] Pierre Degond,et al. On a hierarchy of macroscopic models for semiconductors , 1996 .
[42] Morozov,et al. Zubarev's method of a nonequilibrium statistical operator and some challenges in the theory of irreversible processes , 1998 .
[43] Pierre Degond,et al. Quantum Hydrodynamic models derived from the entropy principle , 2003 .
[44] M. G. Ancona. DIFFUSION‐DRIFT MODELING OF STRONG INVERSION LAYERS , 1987 .
[45] P. Hohenberg,et al. Inhomogeneous Electron Gas , 1964 .
[46] Florian Méhats,et al. Entropic Discretization of a Quantum Drift-Diffusion Model , 2005, SIAM J. Numer. Anal..
[47] M. Fischetti. Theory of electron transport in small semiconductor devices using the Pauli master equation , 1998 .
[48] Accuracy of the Time-Dependent Hartree–Fock Approximation for Uncorrelated Initial States , 2003, math-ph/0303070.
[49] R. Wyatt,et al. Quantum wave packet dynamics with trajectories: Implementation with adaptive Lagrangian grids , 2000 .
[50] Ansgar Jüngel,et al. A derivation of the isothermal quantum hydrodynamic equations using entropy minimization , 2005 .
[51] T. Paul,et al. Sur les mesures de Wigner , 1993 .
[52] M. Ancona,et al. Macroscopic physics of the silicon inversion layer. , 1987, Physical review. B, Condensed matter.
[53] F. Bouchut. ON ZERO PRESSURE GAS DYNAMICS , 1996 .
[54] Ansgar Jüngel,et al. Derivation of New Quantum Hydrodynamic Equations Using Entropy Minimization , 2006, SIAM J. Appl. Math..
[55] P. Markowich,et al. Quantum hydrodynamics, Wigner transforms, the classical limit , 1997 .
[56] P. Argyres. Quantum kinetic equations for electrons in high electric and phonon fields , 1992 .
[57] Y. Brenier,et al. Sticky Particles and Scalar Conservation Laws , 1998 .
[58] François Golse,et al. Weak Copling Limit of the N-Particle Schrödinger Equation , 2000 .