The systematic parameter optimization in the Nd:YAG laser beam welding of Inconel 625

This paper presents process parameter optimization for the laser welding of 0.5-mm-thick Inconel 625. The effect of laser parameters such as laser power (LP), spot size (SS), and welding speed (WS) on weld strength (WST) and microhardness of the welds has been investigated using the response surface methodology (RSM). A three-level design with 20 experimental runs was used. The analysis of variance (ANOVA) was performed and mathematical models were developed to predict the effect of input parameters on the responses. Results indicated that the maximum weld strength of 1280 MPa can be obtained when LP, WS, and SS are set at the optimum values of 260 W, 1.2 mm/s, and 180 μm, respectively. LP of 230 W, WS of 6 mm/s, and SS of 540 μm also resulted in minimum microhardness deviation (MHD) from that of the base metal. Higher heat input caused deeper penetration of weld joint and so higher WST. Formation of Laves phase in samples that receives higher energy density resulted in increase of microhardness and so MHD.

[1]  A. Pandey,et al.  Modeling and optimization of kerf taper and surface roughness in laser cutting of titanium alloy sheet , 2013 .

[2]  F. Xing,et al.  High temperature tensile properties of laser butt-welded plate of Inconel 718 superalloy with ultra-fine grains , 2012 .

[3]  A. Clare,et al.  A parametric study of Inconel 625 wire laser deposition , 2013 .

[4]  C. C. Silva,et al.  New insight on the solidification path of an alloy 625 weld overlay , 2013 .

[5]  Konstantinos Salonitis,et al.  CO2 laser butt-welding of steel sandwich sheet composites , 2013 .

[6]  Huairuo Zhang,et al.  Improvement in Laser Weldability of INCONEL 738 Superalloy through Microstructural Modification , 2009 .

[7]  M. D. Mathew,et al.  Microstructural changes in alloy 625 during high temperature creep , 2008 .

[8]  Cheolhee Kim,et al.  Relationship between the weldability and the process parameters for laser-TIG hybrid welding of galvanized steel sheets , 2008 .

[9]  David Gleicher A Statistical Study , 2006 .

[10]  Xinjin Cao,et al.  Effect of pre- and post-weld heat treatment on metallurgical and tensile properties of Inconel 718 alloy butt joints welded using 4 kW Nd:YAG laser , 2009 .

[11]  Andrew J. Pinkerton,et al.  Fibre laser welding of dissimilar alloys of Ti-6Al-4V and Inconel 718 for aerospace applications , 2011 .

[12]  F. Yusof,et al.  Effect of brazing temperature on the shear strength of Inconel 600 joint , 2014 .

[13]  D. I. Wimpenny,et al.  On Optimization of Surface Roughness of Selective Laser Melted Stainless Steel Parts: A Statistical Study , 2014, Journal of Materials Engineering and Performance.

[14]  P. He,et al.  Microstructural Evolution and Mechanical Properties of Inconel 625 Alloy during Pulsed Plasma Arc Deposition Process , 2013 .

[15]  G. Dini,et al.  Experimental design approach to the process parameter optimization for laser welding of martensitic stainless steels in a constrained overlap configuration , 2011 .

[16]  K. Park,et al.  Welding characteristics of the Inconel plate using a pulsed Nd:YAG laser beam , 2001 .

[17]  S. L. Mannan,et al.  Microstructure and mechanical properties of Inconel 625 superalloy , 2001 .

[18]  M. Berzins,et al.  Selective laser sintering of an amorphous polymer—simulations and experiments , 1999 .

[19]  Yung-Kuang Yang,et al.  OPTIMIZATION OF DRY MACHINING PARAMETERS FOR HIGH-PURITY GRAPHITE IN END MILLING PROCESS VIA DESIGN OF EXPERIMENTS METHODS , 2009 .

[20]  G. Naderi,et al.  Application of response surface methodology for weld strength prediction in laser welding of polypropylene/clay nanocomposite , 2013, Iranian Polymer Journal.

[21]  Kwang-Jae Son,et al.  Optimization of Nd:YAG laser welding parameters for sealing small titanium tube ends , 2006 .

[22]  G. Reddy,et al.  Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds , 2005 .

[23]  Bappa Acherjee,et al.  Prediction of weld strength and seam width for laser transmission welding of thermoplastic using response surface methodology , 2009 .

[24]  C. Wang,et al.  Optimization of Nd:YAG laser welding onto magnesium alloy via Taguchi analysis , 2005 .

[25]  Shao-Hsien Chen,et al.  The prediction of cutting force in milling Inconel-718 , 2005 .

[26]  O. Ojo,et al.  Analysis of laser beam weldability of Inconel 738 superalloy , 2010 .

[27]  S. H. Seyedein,et al.  An analytical algorithm to predict weldability of precipitation-strengthened nickel-base superalloys , 2012 .

[28]  M. Yao,et al.  Precipitation and residual stress relaxation kinetics in shot-peened Inconel 718 , 2006 .

[29]  L. Murr,et al.  Comparison of Microstructures and Properties for a Ni-Base Superalloy (Alloy 625) Fabricated by Electron Beam Melting , 2012 .

[30]  Young Whan Park,et al.  Process modeling and parameter optimization using neural network and genetic algorithms for aluminum laser welding automation , 2008 .