Single step and completely green room temperature biosynthesis of microscale size triangular gold prisms (approximately 25 nm thick) using remnant water collected from soaked Bengal gram beans (Cicer arietinum L.) is reported for the first time. Extracellular transport of protein and biomolecules from protein rich gram beans mediate the reduction of aqueous Au3+ ions and direct the growth of triangular prisms. The growth of triangular gold prisms is monitored by UV-vis spectrometer and supported by complementary characterizations using UV-vis/NIR, TEM, EDS, light microscope, XRD, XPS, ATR-FTIR, and ESI-MS. Plausible mechanism for the formation of microscale size triangular gold prisms is discussed. Effect of varying compositions of gram bean extract and aqueous Au3+ solution governing the morphology of the resultant gold particles is also investigated. Procuring the reducing, growth directing, and stabilizing molecules from the remnant water (extract), which normally would have been a kitchen waste, and water as a universal solvent makes it a completely green process displaying both environmental and economic advantages. Furthermore, this biosynthesis approach is simple, green, and an eco-friendly alternative to chemical synthesis of triangular gold prisms with rates comparable to chemical methods.