Interferometric SAR coherence magnitude estimation using second kind statistics

Coherence magnitude is a fundamental parameter for the analysis of applications using interferometric synthetic aperture radar (InSAR). The coherence magnitude estimators are biased and need bias removal. The sample coherence magnitude estimation, computed on a window basis, depends on the number of independent samples and theoretical coherence. It has been shown that the sample coherence magnitude estimator is the maximum-likelihood one. It is a biased estimator, especially for low coherence values. In this paper, we present a novel coherence magnitude estimator obtained from the method of moments using "second kind statistics". Classical methods (with regular statistics) for coherence computation are based on a probability density function (pdf) model for estimating regular moments (first kind statistics) defined with the Fourier transform. The proposed approach is based on the same pdf model to compute the second kind statistics defined with the Mellin transform (log-moment). Thus, it is shown that the estimated coherence given by the first log-moment is less biased. Moreover, it is shown that the coherence magnitude estimation from complex coherence maps (interferometric data) using second kind statistics is the optimal estimation procedure of interferometric coherence. It gives the smallest bias near zero comparing with existing estimators. The developed estimation approaches have been applied to obtain coherence measurements from tandem European Remote Sensing 1 and 2 satellite interferometric data, collected over varying terrain with a variety of ground cover types (agriculture field, forest, lake, urban area, sea) in Tunisia, France, and Nepal

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  Fabio Rocca,et al.  The wavenumber shift in SAR interferometry , 1994, IEEE Trans. Geosci. Remote. Sens..

[3]  Fritz Oberhettinger,et al.  Tables of Mellin Transforms , 1974 .

[4]  Lars M. H. Ulander,et al.  On the optimization of interferometric SAR for topographic mapping , 1993, IEEE Trans. Geosci. Remote. Sens..

[5]  Claudio Prati,et al.  SAR interferometry: a "Quick and dirty" coherence estimator for data browsing , 1997, IEEE Trans. Geosci. Remote. Sens..

[6]  J.J. Mallorqui,et al.  Calibration of interferometric airborne SAR images using a multisquint processing approach , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[7]  F. Tupin,et al.  Smoothing speckled SAR images by using maximum homogeneous region filters: an improved approach , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[8]  Jean-Marie Nicolas,et al.  Interferometric SAR image coregistration based on the Fourier-Mellin invariant descriptor , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[9]  P. Dammert,et al.  Accuracy of INSAR measurements in forested areas , 1997 .

[10]  Riadh Abdelfattah,et al.  InSAR coherence optimisation using second kind statistics , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[11]  Paris W. Vachon,et al.  Coherence estimation for SAR imagery , 1999, IEEE Trans. Geosci. Remote. Sens..

[12]  Paris W. Vachon,et al.  Unbiased estimation of the coherence from multi-look SAR data , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[13]  Jean-Marie Nicolas,et al.  InSAR coherence estimation for temporal analysis and phase unwrapping applications , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[14]  Jean-Marie Nicolas,et al.  Topographic SAR interferometry formulation for high-precision DEM generation , 2002, IEEE Trans. Geosci. Remote. Sens..

[15]  R. Bamler,et al.  Phase statistics of interferograms with applications to synthetic aperture radar. , 1994, Applied optics.

[16]  M. Seymour,et al.  Maximum likelihood estimation for SAR interferometry , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[17]  Charles Werner,et al.  Accuracy of topographic maps derived from ERS-1 interferometric radar , 1994, IEEE Trans. Geosci. Remote. Sens..

[18]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[19]  Ridha Touzi,et al.  Statistics of the Stokes parameters and of the complex coherence parameters in one-look and multilook speckle fields , 1996, IEEE Trans. Geosci. Remote. Sens..

[20]  Jean-Marie Nicolas 1 - Introduction aux Statistiques de deuxième espèce : applications des Logs-moments et des Logs-cumulants à l'analyse des lois d'images radar , 2002 .

[21]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .