Effect of the accuracy of interatomic force constants on the prediction of lattice thermal conductivity

[1]  Wei Chen,et al.  Efficient molecular dynamics simulations with many-body potentials on graphics processing units , 2016, Comput. Phys. Commun..

[2]  Yang Han,et al.  Resonant bonding driven giant phonon anharmonicity and low thermal conductivity of phosphorene , 2016 .

[3]  Wu Li,et al.  Influence of the optical-acoustic phonon hybridization on phonon scattering and thermal conductivity , 2016 .

[4]  S. Campbell,et al.  Revealing the Origins of 3D Anisotropic Thermal Conductivities of Black Phosphorus , 2016 .

[5]  L. Lindsay First Principles Peierls-Boltzmann Phonon Thermal Transport: A Topical Review , 2016 .

[6]  Wu Li,et al.  Physically founded phonon dispersions of few-layer materials and the case of borophene , 2016, 1601.02884.

[7]  H. Bao,et al.  Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain , 2015, 1512.01685.

[8]  S. Shi,et al.  Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene. , 2015, Nanoscale.

[9]  David Eberly,et al.  Derivative Approximation by Finite Differences , 2016 .

[10]  S. Campbell,et al.  Revealing the Anisotropic Thermal Conductivity of Black Phosphorus using the Time-Resolved Magneto-Optical Kerr Effect , 2015, 1512.06806.

[11]  A. McGaughey,et al.  Effect of exchange-correlation on first-principles-driven lattice thermal conductivity predictions of crystalline silicon , 2015 .

[12]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[13]  Wu Li,et al.  Ultralow lattice thermal conductivity of the fully filled skutterudite YbFe 4 Sb1 2 due to the flat avoided-crossing filler modes , 2015 .

[14]  L. Paulatto,et al.  Phonon hydrodynamics in two-dimensional materials , 2015, Nature Communications.

[15]  Gang Chen,et al.  Hydrodynamic phonon transport in suspended graphene , 2015, Nature Communications.

[16]  Alan J. H. McGaughey,et al.  Strongly anisotropic in-plane thermal transport in single-layer black phosphorene , 2015, Scientific Reports.

[17]  G. Su,et al.  Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. , 2014, Physical chemistry chemical physics : PCCP.

[18]  Ronggui Yang,et al.  First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene , 2014, 1404.2874.

[19]  E. Gross,et al.  Thermal conductivity in PbTe from first principles , 2014, 1402.5535.

[20]  Nicola Marzari,et al.  Thermal conductivity of graphene and graphite: collective excitations and mean free paths. , 2014, Nano letters.

[21]  Gang Zhang,et al.  Coexistence of size-dependent and size-independent thermal conductivities in phosphorene , 2014, 1409.1967.

[22]  Ronggui Yang,et al.  Phonon Transport in Single-Layer Transition Metal Dichalcogenides: a First-Principles Study , 2014, 1407.3758.

[23]  Wu Li,et al.  ShengBTE: A solver of the Boltzmann transport equation for phonons , 2014, Comput. Phys. Commun..

[24]  Wu Li,et al.  Thermal conductivity of fully filled skutterudites: Role of the filler , 2014 .

[25]  Natalio Mingo,et al.  Phonon thermal transport in strained and unstrained graphene from first principles , 2014 .

[26]  H. Bao,et al.  Thermal conductivity of silicene from first-principles , 2014 .

[27]  Tianli Feng,et al.  Prediction of Spectral Phonon Mean Free Path and Thermal Conductivity with Applications to Thermoelectrics and Thermal Management: A Review , 2014 .

[28]  Gang Su,et al.  Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential , 2014 .

[29]  J. Simpson,et al.  Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. , 2014, ACS nano.

[30]  Natalio Mingo,et al.  Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles , 2013 .

[31]  T. L. Reinecke,et al.  Phonon-isotope scattering and thermal conductivity in materials with a large isotope effect: A first-principles study , 2013 .

[32]  C. Uher,et al.  A Viewpoint on: First-Principles Determination of Ultrahigh Thermal Conductivity of Boron Arsenide: A Competitor for Diamond? , 2013 .

[33]  L. Paulatto,et al.  Anharmonic properties from a generalized third order ab~initio approach: theory and applications to graphite and graphene , 2013, 1304.2626.

[34]  M. Lumsden,et al.  Phonon lifetime investigation of anharmonicity and thermal conductivity of UO2 by neutron scattering and theory. , 2013, Physical review letters.

[35]  T. L. Reinecke,et al.  Ab initio thermal transport in compound semiconductors , 2013 .

[36]  Jun Tsuchiya,et al.  Ab initio lattice thermal conductivity of MgSiO3 perovskite as found in Earth's lower mantle. , 2013, Physical review letters.

[37]  Natalio Mingo,et al.  Thermal conductivity of bulk and nanowire Mg2Si_{x}Sn_{1-x} alloys from first principles , 2012 .

[38]  K. Esfarjani,et al.  Gallium arsenide thermal conductivity and optical phonon relaxation times from first-principles calculations , 2012, 1209.6350.

[39]  D. Broido,et al.  Thermal conductivity and large isotope effect in GaN from first principles. , 2012, Physical review letters.

[40]  Nicola Marzari,et al.  Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene. , 2012, Nano letters.

[41]  Junichiro Shiomi,et al.  Phonon conduction in PbSe, PbTe, and PbTe 1 − x Se x from first-principles calculations , 2012 .

[42]  O. Delaire,et al.  Microscopic mechanism of low thermal conductivity in lead telluride , 2012, 1204.0592.

[43]  N. Marzari,et al.  High thermal conductivity in short-period superlattices. , 2011, Nano letters.

[44]  Ling Ti Kong,et al.  Phonon dispersion measured directly from molecular dynamics simulations , 2011, Comput. Phys. Commun..

[45]  Junichiro Shiomi,et al.  Thermal conductivity of half-Heusler compounds from first-principles calculations , 2011 .

[46]  N. Mingo,et al.  Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys , 2011, 1108.6137.

[47]  Gang Chen,et al.  Heat transport in silicon from first-principles calculations , 2011, 1107.5288.

[48]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[49]  Boris Kozinsky,et al.  Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study. , 2011, Physical review letters.

[50]  D. Broido,et al.  Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene , 2010, 1003.2236.

[51]  Jianjun Dong,et al.  Lattice thermal conductivity of MgO at conditions of Earth’s interior , 2010, Proceedings of the National Academy of Sciences.

[52]  David Broido,et al.  Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge , 2010 .

[53]  Gernot Deinzer,et al.  Ab initio theory of the lattice thermal conductivity in diamond , 2009 .

[54]  A. McGaughey,et al.  Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations , 2009 .

[55]  D. Broido,et al.  Intrinsic lattice thermal conductivity of Si/Ge and GaAs/AlAs superlattices , 2008 .

[56]  Harold T. Stokes,et al.  Method to extract anharmonic force constants from first principles calculations , 2008 .

[57]  Deepak Srivastava,et al.  Phonon transmission through defects in carbon nanotubes from first principles , 2008 .

[58]  N. Mingo,et al.  Intrinsic lattice thermal conductivity of semiconductors from first principles , 2007 .

[59]  Lawrence N. Virgin,et al.  Vibration of Axially-Loaded Structures , 2007 .

[60]  Natalio Mingo,et al.  Lattice thermal conductivity of silicon from empirical interatomic potentials , 2005 .

[61]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[62]  G. Ackland,et al.  Practical methods in ab initio lattice dynamics , 1997 .

[63]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[64]  David Goldberg What Every Computer Scientist Should Know About Floating-Point Arithmetic , 1992 .

[65]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[66]  Tadeusz Paszkiewicz,et al.  Physics of Phonons , 1987 .

[67]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[68]  W. Ludwig,et al.  Theory of Anharmonic Effects in Crystals , 1961 .