Composition of the colon microbiota in the individuals with inflammatory bowel disease and colon cancer.

[1]  Shuwen Han,et al.  Different Characteristics in Gut Microbiome between Advanced Adenoma Patients and Colorectal Cancer Patients by Metagenomic Analysis , 2022, Microbiology spectrum.

[2]  Xin Xu,et al.  The relationship between Clostridium butyricum and colorectal cancer , 2022, Journal of cancer research and therapeutics.

[3]  C. Moissl-Eichinger,et al.  Methanogenic archaea in the human gastrointestinal tract , 2022, Nature Reviews Gastroenterology & Hepatology.

[4]  Austin D. Swafford,et al.  Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions , 2022, Cell.

[5]  L. D. Di Stasi,et al.  Gut microbiota, inflammatory bowel disease and colorectal cancer , 2022, World journal of gastroenterology.

[6]  Y. Zhang,et al.  Salivary Fusobacterium nucleatum serves as a potential biomarker for colorectal cancer , 2022, iScience.

[7]  C. la Vecchia,et al.  Blood Bacterial DNA Load and Profiling Differ in Colorectal Cancer Patients Compared to Tumor-Free Controls , 2021, Cancers.

[8]  R. Paredes,et al.  Performance of 16S Metagenomic Profiling in Formalin-Fixed Paraffin-Embedded versus Fresh-Frozen Colorectal Cancer Tissues , 2021, Cancers.

[9]  M. Peppelenbosch,et al.  Technical challenges regarding the use of formalin-fixed paraffin embedded (FFPE) tissue specimens for the detection of bacterial alterations in colorectal cancer , 2021, BMC microbiology.

[10]  F. Carbone,et al.  16S rRNA of Mucosal Colon Microbiome and CCL2 Circulating Levels Are Potential Biomarkers in Colorectal Cancer , 2021, International journal of molecular sciences.

[11]  M. Dalamaga,et al.  Mycobiome and Cancer: What Is the Evidence? , 2021, Cancers.

[12]  G. Gkoutos,et al.  Integration of the Microbiome, Metabolome and Transcriptomics Data Identified Novel Metabolic Pathway Regulation in Colorectal Cancer , 2021, International journal of molecular sciences.

[13]  A. Samer,et al.  Role of Probiotics and Their Metabolites in Inflammatory Bowel Diseases (IBDs) , 2021, Gastroenterology Insights.

[14]  A. Latorre,et al.  Metagenomic analysis of formalin-fixed paraffin-embedded tumor and normal mucosa reveals differences in the microbiome of colorectal cancer patients , 2021, Scientific reports.

[15]  Bangmao Wang,et al.  Gut mycobiome: A promising target for colorectal cancer. , 2020, Biochimica et biophysica acta. Reviews on cancer.

[16]  E. Gomaa Human gut microbiota/microbiome in health and diseases: a review , 2020, Antonie van Leeuwenhoek.

[17]  Jun Yu,et al.  Altered Gut Archaea Composition and Interaction with Bacteria are Associated with Colorectal Cancer. , 2020, Gastroenterology.

[18]  T. Lesker,et al.  Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation , 2020, Mucosal Immunology.

[19]  R. Fry,et al.  Gut Microbiome Toxicity: Connecting the Environment and Gut Microbiome-Associated Diseases , 2020, Toxics.

[20]  A. Need,et al.  Mutational signature in colorectal cancer caused by genotoxic pks+E. coli , 2020, Nature.

[21]  D. Cavalieri,et al.  Comparative immunophenotyping of Saccharomyces cerevisiae and Candida spp. strains from Crohn’s disease patients and their interactions with the gut microbiome , 2020, Journal of translational autoimmunity.

[22]  Sean Kennedy,et al.  SHAMAN: a user-friendly website for metataxonomic analysis from raw reads to statistical analysis , 2019, BMC Bioinformatics.

[23]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[24]  G. Walton,et al.  The Role of the Gut Microbiota in Colorectal Cancer Causation , 2019, International journal of molecular sciences.

[25]  Qing Li,et al.  Fusobacterium nucleatum Contributes to the Carcinogenesis of Colorectal Cancer by Inducing Inflammation and Suppressing Host Immunity , 2019, Translational oncology.

[26]  Paul Theodor Pyl,et al.  Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer , 2019, Nature Medicine.

[27]  N. Cho,et al.  Prognostic Impact of Fusobacterium nucleatum Depends on Combined Tumor Location and Microsatellite Instability Status in Stage II/III Colorectal Cancers Treated with Adjuvant Chemotherapy , 2018, Journal of pathology and translational medicine.

[28]  P. Rutgeerts,et al.  Difference in Pathomechanism Between Crohn's Disease and Ulcerative Colitis Revealed by Colon Transcriptome. , 2018, Inflammatory bowel diseases.

[29]  T. DeSantis,et al.  Re-purposing 16S rRNA gene sequence data from within case paired tumor biopsy and tumor-adjacent biopsy or fecal samples to identify microbial markers for colorectal cancer , 2018, PloS one.

[30]  T. Sharpton,et al.  The influence of ethnicity and geography on human gut microbiome composition , 2018, Nature Medicine.

[31]  A. Jemal,et al.  Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries , 2018, CA: a cancer journal for clinicians.

[32]  D. Han,et al.  Intestinal microbiota, chronic inflammation, and colorectal cancer , 2018, Intestinal research.

[33]  N. Mokhtar,et al.  Delineating inflammatory bowel disease through transcriptomic studies: current review of progress and evidence , 2018, Intestinal research.

[34]  H. Tilg,et al.  The Intestinal Microbiota in Colorectal Cancer. , 2018, Cancer cell.

[35]  N. Marathe,et al.  Molecular profiling of mucosal tissue associated microbiota in patients manifesting acute exacerbations and remission stage of ulcerative colitis , 2018, World journal of microbiology & biotechnology.

[36]  A. Andriulli,et al.  Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies , 2018, Microbiome.

[37]  P. Chaudhary,et al.  Methanogens in humans: potentially beneficial or harmful for health , 2018, Applied Microbiology and Biotechnology.

[38]  A. Kurilshikov,et al.  Environment dominates over host genetics in shaping human gut microbiota , 2018, Nature.

[39]  Y. Naito,et al.  Gut microbiota in the pathogenesis of inflammatory bowel disease , 2018, Clinical Journal of Gastroenterology.

[40]  D. Cavalieri,et al.  Diet, Environments, and Gut Microbiota. A Preliminary Investigation in Children Living in Rural and Urban Burkina Faso and Italy , 2017, Front. Microbiol..

[41]  L. Albenberg,et al.  Gut microbiota and IBD: causation or correlation? , 2017, Nature Reviews Gastroenterology &Hepatology.

[42]  J. Arthur,et al.  The microbiome and the hallmarks of cancer , 2017, PLoS pathogens.

[43]  N. Qin,et al.  Dysbiosis signature of mycobiota in colon polyp and colorectal cancer , 2017, European Journal of Clinical Microbiology & Infectious Diseases.

[44]  C. Dutta,et al.  Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity , 2017, Front. Microbiol..

[45]  M. Nieuwdorp,et al.  Role of the Gut Microbiome in the Pathogenesis of Obesity and Obesity-Related Metabolic Dysfunction. , 2017, Gastroenterology.

[46]  Harry Sokol,et al.  A microbial signature for Crohn's disease , 2017, Gut.

[47]  Ben Nichols,et al.  Distributed under Creative Commons Cc-by 4.0 Vsearch: a Versatile Open Source Tool for Metagenomics , 2022 .

[48]  F. Bäckhed,et al.  Signals from the gut microbiota to distant organs in physiology and disease , 2016, Nature Medicine.

[49]  M. Doebeli,et al.  Decoupling function and taxonomy in the global ocean microbiome , 2016, Science.

[50]  M. A. Saad,et al.  Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance. , 2016, Physiology.

[51]  C. Huttenhower,et al.  The healthy human microbiome , 2016, Genome Medicine.

[52]  F. Ryan,et al.  Tumour-associated and non-tumour-associated microbiota in colorectal cancer , 2016, Gut.

[53]  R. Ley Gut microbiota in 2015: Prevotella in the gut: choose carefully , 2016, Nature Reviews Gastroenterology &Hepatology.

[54]  P. Dagnelie,et al.  Gut colonization with methanobrevibacter smithii is associated with childhood weight development , 2015, Obesity.

[55]  H. Qin,et al.  Probiotics modify human intestinal mucosa-associated microbiota in patients with colorectal cancer. , 2015, Molecular medicine reports.

[56]  Mingyang Song,et al.  Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis , 2015, Gut.

[57]  A. Schechter,et al.  Nitrate Reduction to Nitrite, Nitric Oxide and Ammonia by Gut Bacteria under Physiological Conditions , 2015, PloS one.

[58]  Qiang Feng,et al.  Gut microbiome development along the colorectal adenoma–carcinoma sequence , 2015, Nature Communications.

[59]  G. Trinchieri,et al.  The role of the microbiota in inflammation, carcinogenesis, and cancer therapy , 2015, European journal of immunology.

[60]  Z. Polat,et al.  Evaluation of MUC1, CK20, and hTERT expression in peripheral blood of gastrointestinal cancer patients in search of diagnostic criteria , 2014 .

[61]  William Tottey,et al.  Archaea and the human gut: new beginning of an old story. , 2014, World journal of gastroenterology.

[62]  Angela C. Poole,et al.  Human Genetics Shape the Gut Microbiome , 2014, Cell.

[63]  Jens Roat Kultima,et al.  Potential of fecal microbiota for early‐stage detection of colorectal cancer , 2014 .

[64]  Z. Polat,et al.  Promoter hypermethylation of p16 and APC in gastrointestinal cancer patients. , 2014, The Turkish journal of gastroenterology : the official journal of Turkish Society of Gastroenterology.

[65]  C. Huttenhower,et al.  Relating the metatranscriptome and metagenome of the human gut , 2014, Proceedings of the National Academy of Sciences.

[66]  Jun Shen,et al.  Association between Faecalibacterium prausnitzii Reduction and Inflammatory Bowel Disease: A Meta-Analysis and Systematic Review of the Literature , 2014, Gastroenterology research and practice.

[67]  Y. Cormier,et al.  Increased Prevalence of Methanosphaera stadtmanae in Inflammatory Bowel Diseases , 2014, PloS one.

[68]  Steven R. Tannenbaum,et al.  Arsenic Exposure Perturbs the Gut Microbiome and Its Metabolic Profile in Mice: An Integrated Metagenomics and Metabolomics Analysis , 2014, Environmental health perspectives.

[69]  Lawrence A. David,et al.  Diet rapidly and reproducibly alters the human gut microbiome , 2013, Nature.

[70]  R. Schwabe,et al.  The Microbiome and Cancer , 2021, Gut Feelings.

[71]  Dmitry G. Alexeev,et al.  Human gut microbiota community structures in urban and rural populations in Russia , 2013, Nature Communications.

[72]  Jan Verhaegen,et al.  A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis , 2013, Gut.

[73]  Hongzhe Li,et al.  Archaea and Fungi of the Human Gut Microbiome: Correlations with Diet and Bacterial Residents , 2013, PloS one.

[74]  G. Gao,et al.  Dysbiosis Signature of Fecal Microbiota in Colorectal Cancer Patients , 2013, Microbial Ecology.

[75]  Susan Holmes,et al.  phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data , 2013, PloS one.

[76]  I. Ordás,et al.  Transcriptional analysis of the intestinal mucosa of patients with ulcerative colitis in remission reveals lasting epithelial cell alterations , 2012, Gut.

[77]  Belgin Dogan,et al.  Intestinal Inflammation Targets Cancer-Inducing Activity of the Microbiota , 2012, Science.

[78]  Qiang Feng,et al.  A metagenome-wide association study of gut microbiota in type 2 diabetes , 2012, Nature.

[79]  A. Klindworth,et al.  Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies , 2012, Nucleic acids research.

[80]  Katherine H. Huang,et al.  A framework for human microbiome research , 2012, Nature.

[81]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[82]  R. Gunsalus,et al.  Methanobrevibacter smithii Is the Predominant Methanogen in Patients with Constipation-Predominant IBS and Methane on Breath , 2012, Digestive Diseases and Sciences.

[83]  B. Birren,et al.  Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. , 2012, Genome research.

[84]  Richard A. Moore,et al.  Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. , 2012, Genome research.

[85]  Tarah Lynch,et al.  Invasive potential of gut mucosa‐derived fusobacterium nucleatum positively correlates with IBD status of the host , 2011, Inflammatory bowel diseases.

[86]  Liping Zhao,et al.  Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers , 2011, The ISME Journal.

[87]  Julian Parkhill,et al.  High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease , 2011, BMC Microbiology.

[88]  E. El-Omar,et al.  The Inflammatory Microenvironment in Colorectal Neoplasia , 2011, PloS one.

[89]  Anders F. Andersson,et al.  A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. , 2010, Gastroenterology.

[90]  Zaid Abdo,et al.  Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas , 2010, Gut microbes.

[91]  R. Knight,et al.  The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice , 2009, Science Translational Medicine.

[92]  Cynthia L Sears,et al.  A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses , 2009, Nature Medicine.

[93]  J. Doré,et al.  Low counts of Faecalibacterium prausnitzii in colitis microbiota , 2009, Inflammatory bowel diseases.

[94]  Susan M. Huse,et al.  A Method for Studying Protistan Diversity Using Massively Parallel Sequencing of V9 Hypervariable Regions of Small-Subunit Ribosomal RNA Genes , 2009, PloS one.

[95]  Hilary G. Morrison,et al.  Reproducible Community Dynamics of the Gastrointestinal Microbiota following Antibiotic Perturbation , 2009, Infection and Immunity.

[96]  N. Pace,et al.  Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. , 2008, Cell host & microbe.

[97]  M. Pop,et al.  Metagenomic Analysis of the Human Distal Gut Microbiome , 2006, Science.

[98]  C. Manichanh,et al.  Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach , 2005, Gut.

[99]  F. Bäckhed,et al.  Obesity alters gut microbial ecology. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[100]  P. Prior,et al.  Ulcerative colitis and Crohn's disease: a comparison of the colorectal cancer risk in extensive colitis. , 1994, Gut.

[101]  G. Macfarlane,et al.  Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut. , 1988, The Journal of applied bacteriology.