A machine learning based lecture video segmentation and indexing algorithm

Video segmentation and indexing are important steps in multi-media document understanding and information retrieval. This paper presents a novel machine learning based approach for automatic structuring and indexing of lecture videos. By indexing video content, we can support both topic indexing and semantic querying of multimedia documents. In this paper, our proposed approach extracts features from video images and then uses these features to construct a model to label video frames. Using this model, we are able to segment and indexing videos with accuracy of 95% on our test collection.