Fundus image lesion detection algorithm for diabetic retinopathy screening

[1]  Bunyarit Uyyanonvara,et al.  Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods , 2008, Comput. Medical Imaging Graph..

[2]  Bart M. ter Haar Romeny,et al.  Retinal Microaneurysms Detection Using Local Convergence Index Features , 2017, IEEE Transactions on Image Processing.

[3]  Shih-Chia Huang,et al.  Efficient Contrast Enhancement Using Adaptive Gamma Correction With Weighting Distribution , 2013, IEEE Transactions on Image Processing.

[4]  Santi P. Maity,et al.  Automatic Detection of Retinal Lesions for Screening of Diabetic Retinopathy , 2018, IEEE Transactions on Biomedical Engineering.

[5]  A.D. Hoover,et al.  Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response , 2000, IEEE Transactions on Medical Imaging.

[6]  Chengdong Wu,et al.  A novel approach for red lesions detection using superpixel multi-feature classification in color fundus images , 2017, 2017 29th Chinese Control And Decision Conference (CCDC).

[7]  R. Valarmathi,et al.  RETRACTED ARTICLE: Exudate characterization to diagnose diabetic retinopathy using generalized method , 2019, Journal of Ambient Intelligence and Humanized Computing.

[8]  Joni-Kristian Kämäräinen,et al.  The DIARETDB1 Diabetic Retinopathy Database and Evaluation Protocol , 2007, BMVC.

[9]  Shehzad Khalid,et al.  Detection and classification of retinal lesions for grading of diabetic retinopathy , 2014, Comput. Biol. Medicine.

[10]  Emanuele Trucco,et al.  Leveraging Multiscale Hessian-Based Enhancement With a Novel Exudate Inpainting Technique for Retinal Vessel Segmentation , 2016, IEEE Journal of Biomedical and Health Informatics.

[11]  B. Nayak,et al.  Prevalence of diabetic retinopathy in India: The All India Ophthalmological Society Diabetic Retinopathy Eye Screening Study 2014 , 2016, Indian journal of ophthalmology.

[12]  Yugen Yi,et al.  Automatic Detection of Exudates in Digital Color Fundus Images Using Superpixel Multi-Feature Classification , 2017, IEEE Access.

[13]  Song Guo,et al.  Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening , 2019, Inf. Sci..

[14]  B. Klein,et al.  Global Prevalence and Major Risk Factors of Diabetic Retinopathy , 2012, Diabetes Care.

[15]  Gwanggil Jeon,et al.  Optic disc segmentation and classification in color fundus images: a resource-aware healthcare service in smart cities , 2018 .

[16]  Pascale Massin,et al.  A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina , 2002, IEEE Transactions on Medical Imaging.

[17]  N. P. Ananthamoorthy,et al.  RETRACTED ARTICLE: Robust retinal blood vessel segmentation using convolutional neural network and support vector machine , 2019, Journal of Ambient Intelligence and Humanized Computing.

[18]  Qin Li,et al.  Retinopathy Online Challenge: Automatic Detection of Microaneurysms in Digital Color Fundus Photographs , 2010, IEEE Transactions on Medical Imaging.

[19]  A. Bin Mansoor,et al.  Enhancement of exudates for the diagnosis of diabetic retinopathy using Fuzzy Morphology , 2008, 2008 IEEE International Multitopic Conference.

[20]  Abiodun Musa Aibinu,et al.  AUTOMATIC DIAGNOSIS OF DIABETIC RETINOPATHY USING FUNDUS IMAGES , 2006 .

[21]  Alireza Osareh,et al.  A Computational-Intelligence-Based Approach for Detection of Exudates in Diabetic Retinopathy Images , 2009, IEEE Transactions on Information Technology in Biomedicine.

[22]  Gwénolé Quellec,et al.  Optimal Wavelet Transform for the Detection of Microaneurysms in Retina Photographs , 2008, IEEE Transactions on Medical Imaging.

[23]  Mei Zhou,et al.  Color Retinal Image Enhancement Based on Luminosity and Contrast Adjustment , 2018, IEEE Transactions on Biomedical Engineering.

[24]  Hossein Rabbani,et al.  Automatic detection of exudates and optic disk in retinal images using curvelet transform , 2012 .

[25]  Huiqi Li,et al.  Automated feature extraction in color retinal images by a model based approach , 2004, IEEE Transactions on Biomedical Engineering.

[26]  Marios S. Pattichis,et al.  A Multiscale Optimization Approach to Detect Exudates in the Macula , 2014, IEEE Journal of Biomedical and Health Informatics.

[27]  Peter F. Sharp,et al.  Automated microaneurysm detection using local contrast normalization and local vessel detection , 2006, IEEE Transactions on Medical Imaging.