Newton-like method with modification of the right-hand-side vector

This paper proposes a new Newton-like method which defines new iterates using a linear system with the same coefficient matrix in each iterate. while the correction is performed on the right-hand-side vector of the Newton system. In this way a method is obtained which is less costly than the Newton method and faster than the fixed Newton method. Local convergence is proved for nonsingular systems. The influence of the relaxation parameter is analyzed and explicit formulae for the selection of an optimal parameter are presented. Relevant numerical examples are used to demonstrate the advantages of the proposed method.

[1]  Jośe Mario Martinez,et al.  A family of quasi-Newton methods for nonlinear equations with direct secant updates of matrix factorizations , 1990 .

[2]  R. Schnabel,et al.  A view of unconstrained optimization , 1989 .

[3]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[4]  L. Luksan Inexact trust region method for large sparse systems of nonlinear equations , 1994 .

[5]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[6]  Ferdinand Freudenstein,et al.  Numerical Solution of Systems of Nonlinear Equations , 1963, JACM.

[7]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..

[8]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[9]  J. Dennis,et al.  Direct secant updates of matrix factorizations , 1982 .

[10]  Lenhart K. Schubert Modification of a quasi-Newton method for nonlinear equations with a sparse Jacobian , 1970 .

[11]  L. C. W. Dixon,et al.  On the Impact of Automatic Differentiation on the Relative Performance of Parallel Truncated Newton and Variable Metric Algorithms , 1991, SIAM J. Optim..

[12]  Jan Vlček,et al.  Computational experience with globally convergent descent methods for large sparse systems of nonlinear equations , 1998 .

[13]  K. Brown A Quadratically Convergent Newton-Like Method Based Upon Gaussian-Elimination , 1968 .

[14]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[15]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[16]  J. D. Perkins,et al.  A New Sparsity Preserving Quasi-Newton Update for Solving Nonlinear Equations , 1990, SIAM J. Sci. Comput..

[17]  José Mario Martínez,et al.  Comparing Algorithms for Solving Sparse Nonlinear Systems of Equations , 1992, SIAM J. Sci. Comput..

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  N. Krejić,et al.  On a numerical method for discrete analogues for boundary value problems , 1997 .

[20]  John J. H. Miller,et al.  A uniformly convergent finite difference scheme for a singularly perturbed semilinear equation , 1996 .