Global generalized synchronization in networks of different time-delay systems

We show that global generalized synchronization (GS) exists in structurally different time-delay systems, even with different orders, with quite different fractal (Kaplan-Yorke) dimensions, which emerges via partial GS in symmetrically coupled regular networks. We find that there exists a smooth transformation in such systems, which maps them to a common GS manifold as corroborated by their maximal transverse Lyapunov exponent. In addition, an analytical stability condition using the Krasvoskii-Lyapunov theory is deduced. This phenomenon of GS in strongly distinct systems opens a new way for an effective control of pathological synchronous activity by means of extremely small perturbations to appropriate variables in the synchronization manifold.