Ligand effect on the size, valence state and red/near infrared photoluminescence of bidentate thiol gold nanoclusters.

Synthesis and characterization of gold nanoclusters (Au NCs) stabilized by a zwitterion ligand (Zw) at different Au : Zw ratios are demonstrated. Au NCs exhibit photoluminescence (PL) emission which is tunable from the near infrared (805 nm) to the red spectral window (640 nm) and strongly influenced by the ligand shell size. Optical and chemical investigations suggest the presence of gold polymeric species and large nanoclusters for a molar ratio of Au : Zw = 1 : 1. For 1 : 5 < Au : Zw < 1 : 1, Zw induces etching of the large clusters and the formation of a monolayer of the bidentate ligands on the Au NCs (cluster size ∼7 to 10 kDa) accompanied by red PL emission at λ = 710 nm. A second organic layer starts to form for larger Zw fractions (Au : Zw < 1 : 5) as a result of electrostatic and covalent interactions of the zwitterion leading to an enhancement and a blue-shift of the PL emission. The effect of temperature and pH on the optical properties of gold clusters is strongly dependent on the ligand shell and demonstrates the importance of defining gold nanoclusters as supramolecular assemblies with a complex environment.

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  G. Ramakrishna,et al.  Temperature-Dependent Absorption and Ultrafast Luminescence Dynamics of Bi-Icosahedral Au25 Clusters , 2013 .

[3]  Igor L. Medintz,et al.  PEGylated Luminescent Gold Nanoclusters: Synthesis, Characterization, Bioconjugation, and Application to One‐ and Two‐Photon Cellular Imaging , 2013 .

[4]  Jie Zheng,et al.  Passive tumor targeting of renal-clearable luminescent gold nanoparticles: long tumor retention and fast normal tissue clearance. , 2013, Journal of the American Chemical Society.

[5]  Marcus T. M. Rood,et al.  Enhanced luminescence of Ag nanoclusters via surface modification , 2013, Nanotechnology.

[6]  H. Mattoussi,et al.  Growth of highly fluorescent polyethylene glycol- and zwitterion-functionalized gold nanoclusters. , 2013, ACS nano.

[7]  Kamalesh Chaudhari,et al.  Protein-encapsulated gold cluster aggregates: the case of lysozyme. , 2013, Nanoscale.

[8]  A. Nakajima,et al.  Size and Structure Dependence of Electronic States in Thiolate-Protected Gold Nanoclusters of Au25(SR)18, Au38(SR)24, and Au144(SR)60 , 2013 .

[9]  X. Wen,et al.  Quantum Confined Stark Effect in Au8 and Au25 Nanoclusters , 2013 .

[10]  Uzi Landman,et al.  Au(67)(SR)(35) nanomolecules: characteristic size-specific optical, electrochemical, structural properties and first-principles theoretical analysis. , 2013, The journal of physical chemistry. A.

[11]  Øyvind Halskau,et al.  Tunable photophysical properties, conformation and function of nanosized protein–gold constructs , 2013 .

[12]  V. Trouillet,et al.  High photostability and enhanced fluorescence of gold nanoclusters by silver doping. , 2012, Nanoscale.

[13]  H. Mattoussi,et al.  Growth of in situ functionalized luminescent silver nanoclusters by direct reduction and size focusing. , 2012, ACS nano.

[14]  V V Moshchalkov,et al.  Polarization memory of white luminescence of Ag nanoclusters dispersed in glass host. , 2012, Optics express.

[15]  Chen Zhou,et al.  Different sized luminescent gold nanoparticles. , 2012, Nanoscale.

[16]  Zhikun Wu,et al.  Quantum sized gold nanoclusters with atomic precision. , 2012, Accounts of chemical research.

[17]  X. Wen,et al.  Structure-Correlated Dual Fluorescent Bands in BSA-Protected Au25 Nanoclusters , 2012 .

[18]  W. Marsden I and J , 2012 .

[19]  P. Dugourd,et al.  Structural and Optical Properties of Isolated Noble Metal–Glutathione Complexes: Insight into the Chemistry of Liganded Nanoclusters , 2011 .

[20]  P. L. Xavier,et al.  Understanding the evolution of luminescent gold quantum clusters in protein templates. , 2011, ACS nano.

[21]  E. Yeung,et al.  Functionalized fluorescent gold nanodots: synthesis and application for Pb2+ sensing. , 2011, Chemical communications.

[22]  C. Mottet,et al.  Optical properties of pure and core-shell noble-metal nanoclusters from TDDFT: The influence of the atomic structure , 2011 .

[23]  G. Nienhaus,et al.  Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications , 2011 .

[24]  Y. Hsiao,et al.  Insulin-directed synthesis of fluorescent gold nanoclusters: preservation of insulin bioactivity and versatility in cell imaging. , 2011, Angewandte Chemie.

[25]  Marc Schneider,et al.  Synthesis and characterization of human transferrin-stabilized gold nanoclusters , 2011, Nanotechnology.

[26]  Chen Zhou,et al.  Luminescent gold nanoparticles with pH-dependent membrane adsorption. , 2011, Journal of the American Chemical Society.

[27]  Igor L. Medintz,et al.  Multifunctional compact zwitterionic ligands for preparing robust biocompatible semiconductor quantum dots and gold nanoparticles. , 2011, Journal of the American Chemical Society.

[28]  Ho Jin,et al.  Compact and Stable Quantum Dots with Positive, Negative, or Zwitterionic Surface: Specific Cell Interactions and Non‐Specific Adsorptions by the Surface Charges , 2011 .

[29]  G. Nienhaus,et al.  Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. , 2011, Nanoscale.

[30]  R. Jin,et al.  Catalysis opportunities of atomically precise gold nanoclusters , 2011 .

[31]  Jie Zheng,et al.  Luminescent gold nanoparticles with efficient renal clearance. , 2011, Angewandte Chemie.

[32]  D. Bushnell,et al.  Synthesis and characterization of Au102(p-MBA)44 nanoparticles. , 2011, Journal of the American Chemical Society.

[33]  Xiang-qun Guo,et al.  Facile one-pot synthesis of near-infrared luminescent gold nanoparticles for sensing copper (II) , 2011, Nanotechnology.

[34]  R. Jin,et al.  One‐Pot Synthesis of Au25(SG)18 2‐ and 4‐nm Gold Nanoparticles and Comparison of Their Size‐Dependent Properties , 2011 .

[35]  E. W. Meijer,et al.  A pitfall of using 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile as a matrix in MALDI TOF MS: chemical adduction of matrix to analyte amino groups. , 2010, Journal of mass spectrometry : JMS.

[36]  R. Jin,et al.  Size focusing: a methodology for synthesizing atomically precise gold nanoclusters , 2010 .

[37]  Jason J. Han,et al.  A DNA--silver nanocluster probe that fluoresces upon hybridization. , 2010, Nano letters.

[38]  A. Dass,et al.  Ion mobility mass spectrometry of Au25(SCH2CH2Ph)18 nanoclusters. , 2010, ACS nano.

[39]  P. Liljeroth,et al.  Temperature-Dependent Emission of Monolayer-Protected Au38 Clusters † , 2010 .

[40]  Jinghong Li,et al.  Graphene as a novel matrix for the analysis of small molecules by MALDI-TOF MS. , 2010, Analytical chemistry.

[41]  R. Jin,et al.  On the ligand's role in the fluorescence of gold nanoclusters. , 2010, Nano letters.

[42]  V. Kitaev,et al.  Silver Nanoclusters: Single-Stage Scaleable Synthesis of Monodisperse Species and Their Chirooptical Properties† , 2010 .

[43]  H. Yeh,et al.  A complementary palette of fluorescent silver nanoclusters. , 2010, Chemical communications.

[44]  J. McLean,et al.  Characterization of thiolate-protected gold nanoparticles by mass spectrometry. , 2010, The Analyst.

[45]  Moon J. Kim,et al.  Luminescent Gold Nanoparticles with Mixed Valence States Generated from Dissociation of Polymeric Au (I) Thiolates. , 2010, The journal of physical chemistry. C, Nanomaterials and interfaces.

[46]  Larissa S Fenn,et al.  Surface fragmentation of complexes from thiolate protected gold nanoparticles by ion mobility-mass spectrometry. , 2010, Analytical chemistry.

[47]  R. Jin,et al.  Quantum sized, thiolate-protected gold nanoclusters. , 2010, Nanoscale.

[48]  T. Goodson,et al.  Critical size for the observation of quantum confinement in optically excited gold clusters. , 2010, Journal of the American Chemical Society.

[49]  N. Kalkkinen,et al.  Solvent Dependent Stability of Monolayer Protected Au38 Clusters , 2010 .

[50]  C. Lin,et al.  Recombination dynamics of photoluminescence in thiol-protected gold nanoclusters , 2009 .

[51]  Peng Zhang,et al.  Structural and electronic properties of protein/thiolate-protected gold nanocluster with "staple" motif: A XAS, L-DOS, and XPS study. , 2009, The Journal of chemical physics.

[52]  Robin H. A. Ras,et al.  Color tunability and electrochemiluminescence of silver nanoclusters. , 2009, Angewandte Chemie.

[53]  Igor L. Medintz,et al.  Polyethylene glycol-based bidentate ligands to enhance quantum dot and gold nanoparticle stability in biological media , 2009, Nature Protocols.

[54]  Shaojun Dong,et al.  Sensitive detection of cysteine based on fluorescent silver clusters. , 2009, Biosensors & bioelectronics.

[55]  Wolfgang J. Parak,et al.  Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. , 2009, ACS nano.

[56]  Jianping Xie,et al.  Protein-directed synthesis of highly fluorescent gold nanoclusters. , 2009, Journal of the American Chemical Society.

[57]  H. Mattoussi,et al.  Multifunctional ligands based on dihydrolipoic acid and polyethylene glycol to promote biocompatibility of quantum dots , 2009, Nature Protocols.

[58]  C. Aikens,et al.  Origin of Discrete Optical Absorption Spectra of M25(SH)18− Nanoparticles (M = Au, Ag) , 2008 .

[59]  S. S. Sinha,et al.  Two distinct fluorescent quantum clusters of gold starting from metallic nanoparticles by pH-dependent ligand etching , 2008 .

[60]  R. Jin,et al.  Conversion of Anionic [Au25(SCH2CH2Ph)18]− Cluster to Charge Neutral Cluster via Air Oxidation , 2008 .

[61]  Peter Liljeroth,et al.  Synthesis and stability of monolayer-protected Au38 clusters. , 2008, Journal of the American Chemical Society.

[62]  R. Salvarezza,et al.  Thiol-capped gold: from planar to irregular surfaces , 2008 .

[63]  R. Jin,et al.  Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. , 2008, Journal of the American Chemical Society.

[64]  R. Murray,et al.  Nanoparticle MALDI-TOF mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)(18-x)(L)(x). , 2008, Journal of the American Chemical Society.

[65]  Tom Vosch,et al.  Oligonucleotide-stabilized Ag nanocluster fluorophores. , 2008, Journal of the American Chemical Society.

[66]  S. Dong,et al.  Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. , 2008, Chemical communications.

[67]  E. Gwinn,et al.  Sequence‐Dependent Fluorescence of DNA‐Hosted Silver Nanoclusters , 2008 .

[68]  Ki‐Hyun Kim,et al.  Preparation and Photoluminescent Properties of Gold(I)−Alkanethiolate Complexes Having Highly Ordered Supramolecular Structures , 2007 .

[69]  Igor L. Medintz,et al.  Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. , 2007, Journal of the American Chemical Society.

[70]  Robert M Dickson,et al.  Highly fluorescent noble-metal quantum dots. , 2007, Annual review of physical chemistry.

[71]  J. Wilcoxon,et al.  Synthesis, structure and properties of metal nanoclusters. , 2006, Chemical Society reviews.

[72]  Gangli Wang,et al.  NIR luminescence intensities increase linearly with proportion of polar thiolate ligands in protecting monolayers of Au38 and Au140 quantum dots. , 2006, The journal of physical chemistry. B.

[73]  M. Casaletto,et al.  XPS study of supported gold catalysts: the role of Au0 and Au+δ species as active sites , 2006 .

[74]  P. Mulvaney,et al.  The effects of chemisorption on the luminescence of CdSe quantum dots. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[75]  Eugenia Kumacheva,et al.  Photogeneration of Fluorescent Silver Nanoclusters in Polymer Microgels , 2005 .

[76]  Katsuyuki Nobusada,et al.  Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. , 2005, Journal of the American Chemical Society.

[77]  R. Dickson,et al.  Highly fluorescent, water-soluble, size-tunable gold quantum dots. , 2004, Physical review letters.

[78]  Francesco Stellacci,et al.  Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles , 2004, Nature materials.

[79]  Dongil Lee,et al.  Synthesis and Isolation of the Molecule-like Cluster Au38(PhCH2CH2S)24 , 2004 .

[80]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[81]  L. Nicolais,et al.  Size-controlled synthesis of thiol-derivatized gold clusters , 2003 .

[82]  Robert L. Whetten,et al.  Visible to Infrared Luminescence from a 28-Atom Gold Cluster , 2002 .

[83]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[84]  R. Whetten,et al.  Giant Gold−Glutathione Cluster Compounds: Intense Optical Activity in Metal-Based Transitions , 2000 .

[85]  J. H. Scofield,et al.  Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV , 1976 .

[86]  R. Stephenson A and V , 1962, The British journal of ophthalmology.