Ion-beam irradiation of Gd_2Sn_2O_7 and Gd_2Hf_2O_7 pyrochlore: Bond-type effect

Ceramics with III-IV pyrochlore compositions, A 3 + 2B 4 + 2O 7 (A = Y and rare earth elements; B = Ti, Zr, Sn, or Hf), show a wide range of responses to ion-beam irradiation. To evaluate the role of the B-site cations on the radiation stability of the pyrochlore structure-type, Gd 2 Sn 2 O 7 and Gd 2 Hf 2 O 7 have been irradiated by 1 MeV Kr + . The results are discussed in terms of the ionic size and type of bonding of Sn 4 + and Hf 4 + and compared to previous results for titanate and zirconate pyrochlores. Gd 2 Sn 2 O 7 is sensitive to ion beam-induced amorphization with a critical amorphization dose of approximately 3.4 displacements per atom (dpa) (2.62 x 10 1 5 ions/cm 2 ) at room temperature and a critical amorphization temperature of approximately 350 K. Gd 2 Hf 2 O 7 does not become amorphous at a dose of approximately 4.54 displacement per [lattice] atom (3.13 x 10 1 5 ions/cm 2 ) at room temperature, but instead is transformed to a disordered fluorite structure upon ion-beam irradiation. Although the radius ratio of the A- to B-site cations provides a general indication of the type of radiation response of different pyrochlore compositions, the results for Gd 2 Sn 2 O 7 emphasize the importance of bond type, particularly the covalency of the (Sn-O) bond in determining the radiation response.

[1]  William J. Weber,et al.  Models and mechanisms of irradiation-induced amorphization in ceramics , 2000 .

[2]  A. E. Ringwood,et al.  Immobilisation of high level nuclear reactor wastes in SYNROC , 1979, Nature.

[3]  Katherine L. Smith,et al.  Measured displacement energies of oxygen ions in titanates and zirconates , 2003 .

[4]  K. Sun,et al.  The order-disorder transition in ion-irradiated pyrochlore , 2003 .

[5]  Bryan C. Chakoumakos,et al.  Systematics of the pyrochlore structure type, ideal A2B2X6Y , 1984 .

[6]  Roger Kelly,et al.  Criteria for bombardment-induced structural changes in non-metallic solids , 1975 .

[7]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[8]  Hartmann,et al.  Radiation tolerance of complex oxides , 2000, Science.

[9]  W. Weber,et al.  Plutonium Immobilization and Radiation Effects , 2000, Science.

[10]  Lumin Wang,et al.  Ion irradiation-induced phase transformation of pyrochlore and zirconolite , 1999 .

[11]  C. Randall,et al.  Investigation of the dielectric properties of bismuth pyrochlores , 1996 .

[12]  Jie Lian,et al.  Ion-irradiation-induced amorphization of La 2 Zr 2 O 7 pyrochlore , 2002 .

[13]  R. Ewing,et al.  Nanoscale manipulation of pyrochlore: new nanocomposite ionic conductors. , 2001, Physical review letters.

[14]  R. Ewing,et al.  The amorphization of complex silicates by ion-beam irradiation , 1992 .

[15]  Harry L. Tuller,et al.  Mixed ionic-electronic conduction in a number of fluorite and pyrochlore compounds , 1992 .

[16]  H. Tuller,et al.  Ionic conduction in the Gd2Ti2O7−Gd2Zr2O7 system , 1988 .

[17]  R. Grimes,et al.  Radiation induced amorphization resistance in A2O3–BO2 oxides , 2002 .

[18]  Jian Chen,et al.  Radiation-induced amorphization of rare-earth titanate pyrochlores , 2003 .

[19]  N. Padture,et al.  Low‐Thermal‐Conductivity Rare‐Earth Zirconates for Potential Thermal‐Barrier‐Coating Applications , 2004 .

[20]  W. Weber,et al.  Atomistic modeling of displacement cascades in La 2 Zr 2 O 7 pyrochlore , 2003 .

[21]  R. Ewing,et al.  Ion irradiation of rare-earth- and yttrium-titanate-pyrochlores , 2000 .

[22]  W. J. Weber,et al.  Radiation effects in nuclear waste forms for high-level radioactive waste , 1995 .

[23]  J. Ziegler,et al.  stopping and range of ions in solids , 1985 .

[24]  Steven J. Zinkle,et al.  Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium , 1998 .

[25]  W. J. Weber,et al.  Heavy-ion irradiation effects in Gd2(Ti2−xZrx)O7 pyrochlores , 2001 .

[26]  Kevin W. Eberman,et al.  Order-disorder phenomena in A2B2O7 pyrochlore oxides , 2000 .

[27]  William J. Weber,et al.  Radiation stability of gadolinium zirconate: A waste form for plutonium disposition , 1999 .

[28]  J. Goodenough,et al.  Defect pyrochlores as catalyst supports , 1982 .

[29]  Lumin Wang,et al.  Irradiation-induced amorphization: Effects of temperature, ion mass, cascade size, and dose rate , 2000 .

[30]  R. Ewing,et al.  Ion beam-induced amorphization in MgO–Al2O3–SiO2. II. Empirical model , 1998 .

[31]  Brett A. Hunter,et al.  Structural and Bonding Trends in Tin Pyrochlore Oxides , 1997 .

[32]  G. V. Subba Rao,et al.  Oxide pyrochlores — A review , 1983 .