A 0.76 mm2 0.22 nJ/Pixel DL-Assisted 4K Video Encoder LSI for Quality-of-Experience Over Smartphones

This letter proposes the world’s first deep learning (DL)-assisted video encoder LSI fabricated in a 10-nm process with a core area of 0.76 mm<sup>2</sup> to integrate quad-core DL accelerators and <inline-formula> <tex-math notation="LaTeX">$4\text{K}\times 2\text{K}$ </tex-math></inline-formula> H.264/H.265 video encoders. A visual-contact-field network (VCFNet) DL model is newly designed to predict human focus information with extraordinary reduction of encoding complexity, leading to 82.3% power reduction. Moreover, input channel reduction and layer merging approaches reduce VCFNet complexity by 69%. Operated at 0.9 V and 504 MHz, the proposed DL-assisted 4K video encoder LSI consumes 56.54 mW to achieve 0.22 nJ/pixel of energy efficiency, cutting 0.1-14 nJ/pixel compared to conventional designs.

[1]  Liang-Gee Chen,et al.  A 1062Mpixels/s 8192×4320p High Efficiency Video Coding (H.265) encoder chip , 2013, 2013 Symposium on VLSI Circuits.

[2]  Joel Silberman,et al.  A Scalable Multi- TeraOPS Deep Learning Processor Core for AI Trainina and Inference , 2018, 2018 IEEE Symposium on VLSI Circuits.

[3]  Uming Ko,et al.  3.4 A 10nm FinFET 2.8GHz tri-gear deca-core CPU complex with optimized power-delivery network for mobile SoC performance , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[4]  Lien-Fei Chen,et al.  A 0.5 nJ/Pixel 4 K H.265/HEVC Codec LSI for Multi-Format Smartphone Applications , 2016, IEEE Journal of Solid-State Circuits.

[5]  Jiun-In Guo,et al.  A 7mW-to-183mW Dynamic Quality-Scalable H.264 Video Encoder Chip , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[6]  Leibo Liu,et al.  A 1.06-to-5.09 TOPS/W reconfigurable hybrid-neural-network processor for deep learning applications , 2017, 2017 Symposium on VLSI Circuits.

[7]  Jun Okamoto,et al.  Single-chip 4K 60fps 4:2:2 HEVC video encoder LSI with 8K scalability , 2015, 2015 Symposium on VLSI Circuits (VLSI Circuits).

[8]  Chen-Yi Lee,et al.  A 41.3/26.7 pJ per Neuron Weight RBM Processor Supporting On-Chip Learning/Inference for IoT Applications , 2017, IEEE Journal of Solid-State Circuits.

[9]  Lien-Fei Chen,et al.  18.6 A 0.5nJ/pixel 4K H.265/HEVC codec LSI for multi-format smartphone applications , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[10]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.