On the Probability That All Eigenvalues of Gaussian, Wishart, and Double Wishart Random Matrices Lie Within an Interval

We derive the probability that all eigenvalues of a random matrix M lie within an arbitrary interval <inline-formula> <tex-math notation="LaTeX">$[a,b]$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$\psi (a,b)\triangleq \Pr \{a\leq \lambda _{\min }({\text{M}}), \lambda _{\max }({\text{M}})\leq b\}$ </tex-math></inline-formula>, when M is a real or complex finite-dimensional Wishart, double Wishart, or Gaussian symmetric/Hermitian matrix. We give efficient recursive formulas allowing the exact evaluation of <inline-formula> <tex-math notation="LaTeX">$\psi (a,b)$ </tex-math></inline-formula> for Wishart matrices, even with a large number of variates and degrees of freedom. We also prove that the probability that all eigenvalues are within the limiting spectral support (given by the Marčenko-Pastur or the semicircle laws) tends for large dimensions to the universal values 0.6921 and 0.9397 for the real and complex cases, respectively. Applications include improved bounds for the probability that a Gaussian measurement matrix has a given restricted isometry constant in compressed sensing.

[1]  Marco Chiani,et al.  Distribution of the largest root of a matrix for Roy's test in multivariate analysis of variance , 2014, J. Multivar. Anal..

[2]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[3]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[4]  C. Khatri Distribution of the Largest or the Smallest Characteristic Root Under Null Hypothesis Concerning Complex Multivariate Normal Populations , 1964 .

[5]  ROBERT M. MAY,et al.  Will a Large Complex System be Stable? , 1972, Nature.

[6]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[7]  Moe Z. Win,et al.  On the marginal distribution of the eigenvalues of wishart matrices , 2009, IEEE Transactions on Communications.

[8]  K. Pillai,et al.  Upper percentage points of the largest root of a matrix in multivariate analysis. , 1967, Biometrika.

[9]  de Ng Dick Bruijn On some multiple integrals involving determinants , 1955 .

[10]  S. Majumdar,et al.  Extreme value statistics of eigenvalues of Gaussian random matrices. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  A. Meredith,et al.  UNITED STATES DEPARTMENT OF COMMERCE , 1999 .

[12]  S. Péché Universality results for largest eigenvalues of some sample covariance matrix ensembles , 2007, 0705.1701.

[13]  S. Majumdar,et al.  Large deviations of extreme eigenvalues of random matrices. , 2006, Physical review letters.

[14]  S. Majumdar,et al.  Large deviations of the maximum eigenvalue in Wishart random matrices , 2007, cond-mat/0701371.

[15]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[16]  Zongming Ma,et al.  Accuracy of the Tracy–Widom limits for the extreme eigenvalues in white Wishart matrices , 2012, 1203.0839.

[17]  C. Tracy,et al.  The Distributions of Random Matrix Theory and their Applications , 2009 .

[18]  C. Tracy,et al.  Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .

[19]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[20]  Matthew R. McKay,et al.  Coulumb Fluid, Painlevé Transcendents, and the Information Theory of MIMO Systems , 2012, IEEE Transactions on Information Theory.

[21]  Richard Easther,et al.  Cosmology from random multifield potentials , 2005, hep-th/0512050.

[22]  A. James Distributions of Matrix Variates and Latent Roots Derived from Normal Samples , 1964 .

[23]  Gregorio Malajovich,et al.  On the number of minima of a random polynomial , 2008, J. Complex..

[24]  B. Nadler Finite sample approximation results for principal component analysis: a matrix perturbation approach , 2009, 0901.3245.

[25]  Lie Wang,et al.  New Bounds for Restricted Isometry Constants , 2009, IEEE Transactions on Information Theory.

[26]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[27]  Liam McAllister,et al.  Charting an Inflationary Landscape with Random Matrix Theory , 2013, 1307.3559.

[28]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[29]  Marco Chiani,et al.  Joint distribution of an arbitrary subset of the ordered eigenvalues of Wishart matrices , 2008, 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications.

[30]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[31]  Jack H. Winters,et al.  On the Capacity of Radio Communication Systems with Diversity in a Rayleigh Fading Environment , 1987, IEEE J. Sel. Areas Commun..

[32]  A. Soshnikov A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices , 2001, math/0104113.

[33]  Hyundong Shin,et al.  MIMO Networks: The Effects of Interference , 2008, IEEE Transactions on Information Theory.

[34]  Marco Chiani,et al.  Distribution of the largest eigenvalue for real Wishart and Gaussian random matrices and a simple approximation for the Tracy-Widom distribution , 2012, J. Multivar. Anal..

[35]  Iain M Johnstone,et al.  APPROXIMATE NULL DISTRIBUTION OF THE LARGEST ROOT IN MULTIVARIATE ANALYSIS. , 2010, The annals of applied statistics.

[36]  Moe Z. Win,et al.  On the capacity of spatially correlated MIMO Rayleigh-fading channels , 2003, IEEE Trans. Inf. Theory.

[37]  S. Majumdar,et al.  Number of relevant directions in principal component analysis and Wishart random matrices. , 2011, Physical review letters.

[38]  S. Majumdar,et al.  A simple derivation of the Tracy–Widom distribution of the maximal eigenvalue of a Gaussian unitary random matrix , 2011, 1102.0738.

[39]  Noureddine El Karoui On the largest eigenvalue of Wishart matrices with identity covariance when n, p and p/n tend to infinity , 2003, math/0309355.

[40]  Roberto Garello,et al.  Cooperative spectrum sensing based on the limiting eigenvalue ratio distribution in wishart matrices , 2009, IEEE Communications Letters.

[41]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[42]  Ohad N. Feldheim,et al.  A Universality Result for the Smallest Eigenvalues of Certain Sample Covariance Matrices , 2008, 0812.1961.

[43]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[44]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[45]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[46]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .