Pulmonary surfactant mitigates silver nanoparticle toxicity in human alveolar type-I-like epithelial cells.

[1]  Rahul S. Kalhapure,et al.  Solid lipid nanoparticles of clotrimazole silver complex: An efficient nano antibacterial against Staphylococcus aureus and MRSA. , 2015, Colloids and surfaces. B, Biointerfaces.

[2]  A. Gow,et al.  Silver nanowire interactions with primary human alveolar type-II epithelial cell secretions: contrasting bioreactivity with human alveolar type-I and type-II epithelial cells. , 2015, Nanoscale.

[3]  Jun Xu,et al.  Stable and efficient loading of silver nanoparticles in spherical polyelectrolyte brushes and the antibacterial effects. , 2015, Colloids and surfaces. B, Biointerfaces.

[4]  B. Fadeel,et al.  Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release , 2014, Particle and Fibre Toxicology.

[5]  Bengt Fadeel,et al.  Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release , 2014, Particle and Fibre Toxicology.

[6]  Wojciech Zareba,et al.  Ambient fine particulate air pollution triggers ST-elevation myocardial infarction, but not non-ST elevation myocardial infarction: a case-crossover study , 2014, Particle and Fibre Toxicology.

[7]  A. Gow,et al.  High-resolution analytical electron microscopy reveals cell culture media-induced changes to the chemistry of silver nanowires. , 2013, Environmental science & technology.

[8]  A. Gow,et al.  The stability of silver nanoparticles in a model of pulmonary surfactant. , 2013, Environmental science & technology.

[9]  Lennart Möller,et al.  Intracellular uptake and toxicity of Ag and CuO nanoparticles: a comparison between nanoparticles and their corresponding metal ions. , 2013, Small.

[10]  Pedro J J Alvarez,et al.  Negligible particle-specific antibacterial activity of silver nanoparticles. , 2012, Nano letters.

[11]  Kangtaek Lee,et al.  The effects of sub-lethal concentrations of silver nanoparticles on inflammatory and stress genes in human macrophages using cDNA microarray analysis. , 2012, Biomaterials.

[12]  L. Edwards,et al.  Inflammatory biomarkers improve clinical prediction of mortality in chronic obstructive pulmonary disease. , 2012, American journal of respiratory and critical care medicine.

[13]  Jamie R Lead,et al.  Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. , 2012, Environmental science & technology.

[14]  Stella M. Marinakos,et al.  Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. , 2012, Environmental science & technology.

[15]  R. Mallampalli,et al.  Surfactant and its role in the pathobiology of pulmonary infection. , 2012, Microbes and infection.

[16]  Ha Ryong Kim,et al.  Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (BEAS-2B) cells. , 2011, Mutation research.

[17]  W. D. de Jong,et al.  The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. , 2011, Biomaterials.

[18]  Yu-feng Li,et al.  Fate and toxicity of metallic and metal-containing nanoparticles for biomedical applications. , 2011, Small.

[19]  Qihui Fan,et al.  Comparative study of clinical pulmonary surfactants using atomic force microscopy. , 2011, Biochimica et biophysica acta.

[20]  Yongsheng Chen,et al.  Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. , 2011, Environmental science & technology.

[21]  D. Sin,et al.  Particulate matter induces translocation of IL-6 from the lung to the systemic circulation. , 2011, American journal of respiratory cell and molecular biology.

[22]  H. Autrup,et al.  Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549 , 2011, Archives of Toxicology.

[23]  R. Hurt,et al.  Controlled release of biologically active silver from nanosilver surfaces. , 2010, ACS nano.

[24]  Jae-Chun Ryu,et al.  Cytotoxicity and genotoxicity of nano-silver in mammalian cell lines , 2010, Molecular & Cellular Toxicology.

[25]  Matthias Epple,et al.  TOXICITY OF SILVER NANOPARTICLES INCREASES DURING STORAGE BECAUSE OF SLOW DISSOLUTION UNDER RELEASE OF SILVER IONS , 2010 .

[26]  C. Che,et al.  Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: a kinetic and mechanistic study. , 2010, Chemistry, an Asian journal.

[27]  J. Maessen,et al.  The relationship between the antimicrobial effect of catheter coatings containing silver nanoparticles and the coagulation of contacting blood. , 2009, Biomaterials.

[28]  M. Hande,et al.  Cytotoxicity and genotoxicity of silver nanoparticles in human cells. , 2009, ACS nano.

[29]  G. Bothun,et al.  Hydrophobic silver nanoparticles trapped in lipid bilayers: Size distribution, bilayer phase behavior, and optical properties , 2008, Journal of nanobiotechnology.

[30]  R. L. Jones,et al.  Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. , 2008, The journal of physical chemistry. B.

[31]  Enrique Navarro,et al.  Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. , 2008, Environmental science & technology.

[32]  Y. Korchev,et al.  Immortalization of human alveolar epithelial cells to investigate nanoparticle uptake. , 2008, American journal of respiratory cell and molecular biology.

[33]  Thawatchai Maneerung,et al.  Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing , 2008 .

[34]  M. Bakshi,et al.  Metal nanoparticle pollutants interfere with pulmonary surfactant function in vitro. , 2008, Biophysical journal.

[35]  Hongwei Liao,et al.  Biomedical applications of plasmon resonant metal nanoparticles. , 2006, Nanomedicine.

[36]  Andre E Nel,et al.  Tracheobronchial particle dose considerations for in vitro toxicology studies. , 2006, Toxicological sciences : an official journal of the Society of Toxicology.

[37]  G. Oberdörster,et al.  Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles , 2005, Environmental health perspectives.

[38]  K. Welsh,et al.  Analysis of Tumor Necrosis Factor- α , Lymphotoxin- α , Tumor Necrosis Factor Receptor II, and Interleukin-6 Polymorphisms in Patients with Idiopathic Pulmonary Fibrosis , 2001 .

[39]  P. Ridker,et al.  Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. , 2000, Circulation.

[40]  F. Saulnier,et al.  Balance between proinflammatory cytokines and their inhibitors in bronchial lavage from patients with status asthmaticus. , 1999, American journal of respiratory and critical care medicine.

[41]  J. Konz,et al.  Exposure factors handbook , 1989 .

[42]  E R Weibel,et al.  Cell number and cell characteristics of the normal human lung. , 2015, The American review of respiratory disease.

[43]  J. Crapo,et al.  Cell number and cell characteristics of the normal human lung. , 1982, The American review of respiratory disease.