Interstellar Dust in the Solar System

Abstract The Ulysses spacecraft has been orbiting the Sun on a highly inclined ellipse almost perpendicular to the ecliptic plane (inclination 79°, perihelion distance 1.3 AU, aphelion distance 5.4 AU) since it encountered Jupiter in 1992. The in situ dust detector on board continuously measured interstellar dust grains with masses up to 10−13 kg, penetrating deep into the solar system. The flow direction is close to the mean apex of the Sun’s motion through the solar system and the grains act as tracers of the physical conditions in the local interstellar cloud (LIC). While Ulysses monitored the interstellar dust stream at high ecliptic latitudes between 3 and 5 AU, interstellar impactors were also measured with the in situ dust detectors on board Cassini, Galileo and Helios, covering a heliocentric distance range between 0.3 and 3 AU in the ecliptic plane. The interstellar dust stream in the inner solar system is altered by the solar radiation pressure force, gravitational focussing and interaction of charged grains with the time varying interplanetary magnetic field. We review the results from in situ interstellar dust measurements in the solar system and present Ulysses’ latest interstellar dust data. These data indicate a 30° shift in the impact direction of interstellar grains w.r.t. the interstellar helium flow direction, the reason of which is presently unknown.

[1]  Space Science Reviews , 1962, Nature.

[2]  E. Grün,et al.  The E-ring in the vicinity of Enceladus: II. Probing the moon's interior—The composition of E-ring particles , 2008 .

[3]  B. M. Pedersen,et al.  Voyager 2 at Uranus: Grain impacts in the ring plane , 1986 .

[4]  M. Burchell,et al.  Sample return of interstellar matter (SARIM) , 2009 .

[5]  J. Jokipii,et al.  Penetration of interstellar dust into the Solar System , 1976, Nature.

[6]  M. L. Kaiser,et al.  The Cassini Radio and Plasma Wave Investigation , 2004 .

[7]  H. Kimura,et al.  Interstellar dust properties derived from mass density, mass distribution, and flux rates in the heliosphere , 2000 .

[8]  D. Gurnett,et al.  Detecting nanoparticles at radio frequencies: Jovian dust stream impacts on Cassini/RPWS , 2009 .

[9]  E. Grün,et al.  The motion of charged dust particles in interplanetary space. I - The zodiacal dust cloud. II - Interstellar grains , 1979 .

[10]  Aaron Roberts,et al.  An unexplained 10–40° shift in the location of some diverse neutral atom data at 1 AU , 2004 .

[11]  Nicolas Altobelli,et al.  A new look into the Helios dust experiment data: presence of interstellar dust inside the Earth's orbit , 2006 .

[12]  E. Jessberger,et al.  Composition, Structure, and Size Distribution of Dust in the Local Interstellar Cloud , 2003 .

[13]  P. Zarka,et al.  Dust distribution around Neptune: Grain impacts near the ring plane measured by the Voyager Planetary Radio Astronomy Experiment , 1991 .

[14]  Priscilla C. Frisch Jonathan D. Slavin The Chemical Composition and Gas-to-Dust Mass Ratio of Nearby Interstellar Matter , 2003 .

[15]  D. Gurnett,et al.  Micron‐sized particles detected in the vicinity of Jupiter by the Voyager plasma wave instruments , 1996 .

[16]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[17]  H. Fechtig,et al.  Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft , 1993, Nature.

[18]  H. Rosenbauer,et al.  Recent results on the parameters of the interstellar helium from the ULYSSES/GAS experiment , 1996 .

[19]  H. Maring,et al.  Journal of Geophysical Research , 1949, Nature.

[20]  E. Igenbergs,et al.  The Cassini Cosmic Dust Analyzer , 2004 .

[21]  P. Hoppe,et al.  NanoSIMS isotopic analysis of small presolar grains: Search for Si3N4 grains from AGB stars and Al and Ti isotopic compositions of rare presolar SiC grains , 2007 .

[22]  D. Cruikshank Interstellar Dust in the Solar System , 1996 .

[23]  Abraham Pais,et al.  Inward bound : of matter and forces in the physical world / Abraham Pais , 1986 .

[24]  J. Danby,et al.  Statistical Dynamics and Accretion , 1957 .

[25]  E. Grün,et al.  The Galileo Dust Detector , 1992 .

[26]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[27]  E. Grün,et al.  Cassini between Earth and asteroid belt: first in-situ charge measurements of interplanetary grains , 2004 .

[28]  P. Oberc Electric antenna as a dust detector , 1996 .

[29]  M. Wallis Penetration of charged interstellar dust into the solar system , 1987 .

[30]  Sascha Kempf,et al.  Cassini between Venus and Earth: Detection of interstellar dust , 2003 .

[31]  S. Dermott,et al.  An Estimation of the Interstellar Contribution to the Zodiacal Thermal Emission , 1996 .

[32]  N. Mcbride,et al.  Meteoroid impacts on spacecraft: sporadics, streams, and the 1999 Leonids , 1999 .

[33]  E. Grün,et al.  Dust particles detected near Giacobini-Zinner by the ICE plasma wave instrument , 1986 .

[34]  R. Tuffs,et al.  The Spectral Energy Distribution of Gas-Rich Galaxies: Confronting Models with Data , 2005 .

[35]  Gregor E. Morfill,et al.  South-north and radial traverses through the interplanetary dust cloud , 1997 .

[36]  W. Kurth,et al.  Cassini RPWS observations of dust in Saturn's E Ring , 2006 .

[37]  M. Witte Kinetic parameters of interstellar neutral helium - Review of results obtained during one solar cycle with the Ulysses/GAS-instrument , 2004 .

[38]  T. Mukai On the charge distribution of interplanetary grains , 1981 .

[39]  Donald A. Gurnett,et al.  Micron‐sized particles detected near Neptune by the Voyager 2 plasma wave instrument , 1991 .

[40]  Donald A. Gurnett,et al.  Micron-sized particles detected near Saturn by the Voyager plasma wave instrument☆ , 1983 .

[41]  E. Grün,et al.  Physics of interplanetary and interstellar dust , 1996 .

[42]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[43]  E. Grün,et al.  Penetration of the heliosphere by the interstellar dust stream during solar maximum , 2003 .

[44]  P. Frisch,et al.  The boundary conditions of the heliosphere : photoionization models constrained by interstellar and in situ data , 2007, 0704.0657.

[45]  Mihaly Horanyi,et al.  CHARGED DUST DYNAMICS IN THE SOLAR SYSTEM , 1996 .

[46]  M. Landgraf Modeling the motion and distribution of interstellar dust inside the heliosphere , 1999, astro-ph/9906300.

[47]  J. Burns,et al.  Radiation forces on small particles in the solar system , 1979 .

[48]  E. Grün,et al.  The flux of interstellar dust observed by Ulysses and Galileo , 1995 .

[49]  C. Estournel,et al.  Observation and modeling of the winter coastal oceanic circulation in the Gulf of Lion under wind conditions influenced by the continental orography (FETCH experiment) , 2003 .

[50]  H. Laakso,et al.  Impacts of large dust particles on the Vega spacecraft , 1989 .

[51]  K. Glassmeier,et al.  Dust impacts at Comet P/Borrelly , 2003 .

[52]  G. Schwehm 5.9 Radiation Pressure on Interplanetary Dust Particles , 1976 .

[53]  E. Jessberger,et al.  Elemental Abundances and Mass Densities of Dust and Gas in the Local Interstellar Cloud , 2003 .

[54]  D. Brownlee,et al.  An infrared spectral match between GEMS and interstellar grains. , 1999, Science.

[55]  Sascha Kempf,et al.  Interstellar dust flux measurements by the Galileo dust instrument between the orbits of Venus and Mars , 2005 .

[56]  I. Mann,et al.  Penetration of interstellar dust grains into the heliosphere , 2003 .

[57]  E. Grün,et al.  Influence of wall impacts on the Ulysses dust detector on understanding the interstellar dust flux , 2004 .

[58]  T. Gombosi,et al.  Interstellar dust filtration at the heliospheric interface , 2000 .

[59]  Guenther Eichhorn,et al.  The HEOS 2 and HELIOS micrometeoroid experiments , 1973 .

[60]  M. Landgraf,et al.  Aspects of the mass distribution of interstellar dust grains in the solar system from in situ measurements , 1999 .

[61]  H. Kimura,et al.  Selection effects on interstellar dust in heliosphere , 2000 .

[62]  E. Grün,et al.  Ulysses jovian latitude scan of high-velocity dust streams originating from the jovian system , 2006 .

[63]  E. Grün,et al.  Interstellar Dust Inside and Outside the Heliosphere , 2008, 0802.3787.

[64]  Richard G. Arendt,et al.  Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints , 2003, astro-ph/0312641.

[65]  K. Glassmeier,et al.  Hypervelocity dust particle impacts observed by the Giotto Magnetometer and Plasma Experiments , 1990 .

[66]  A. Taylor,et al.  Discovery of interstellar dust entering the Earth's atmosphere , 1996, Nature.

[67]  J. Weingartner,et al.  Dust Grain Size Distributions and Extinction in the Milky Way, LMC, and SMC , 2000, astro-ph/0008146.

[68]  E. Grün,et al.  The composition of Saturn's E ring , 2007 .

[69]  P. Frisch Foreword [to Special Section on Interstellar Dust and the Heliosphere] , 2000 .

[70]  H. Kimura,et al.  The Electric Charging of Interstellar Dust in the Solar System and Consequences for Its Dynamics , 1998 .

[71]  E. Parker Dynamics of the Interplanetary Gas and Magnetic Fields , 1958 .

[72]  J. Burns,et al.  Micron-sized-particle impacts detected near Uranus by the Voyager 2 plasma-wave instrument. Progress report for period ending 1986 , 1986 .

[73]  M. Abbas,et al.  Planetary and Space Science, 2007, in press LUNAR DUST CHARGING BY PHOTOELECTRIC EMISSIONS , 2007 .

[74]  E. Grün,et al.  In‐Situ Monitoring of Interstellar Dust in the Inner Solar System , 2005 .

[75]  E. Grün,et al.  In situ measurements of interstellar dust with the Ulysses and Galileo spaceprobes , 1996 .

[76]  E. Grün,et al.  Deflection of the local interstellar dust flow by solar radiation pressure. , 1999, Science.

[77]  D. Gurnett,et al.  Voyager 2 Plasma Wave Observations at Saturn , 1982, Science.

[78]  B. Gustafson Physics of Zodiacal Dust , 1994 .

[79]  A. Tielens,et al.  The Absence of Crystalline Silicates in the Diffuse Interstellar Medium , 2004, astro-ph/0403609.

[80]  J. Blamont,et al.  Possible evidence for penetration of interstellar dust into the Solar System , 1976, Nature.

[81]  Jeffrey L. Linsky,et al.  The Three-dimensional Structure of the Warm Local Interstellar Medium. II. The Colorado Model of the Local Interstellar Cloud , 2000 .

[82]  W. Baggaley,et al.  A model of the heliocentric orbits of a stream of Earth-impacting interstellar meteoroids , 2002 .

[83]  M. Trieloff,et al.  Evolution of interstellar dust and stardust in the solar neighbourhood , 2007, 0706.1155.

[84]  H. Kimura,et al.  Filtering of the interstellar dust flow near the heliopause: the importance of secondary electron emission for the grain charging , 1999 .

[85]  W. Baggaley Advanced Meteor Orbit Radar observations of interstellar meteoroids , 2000 .

[86]  B. Gustafson,et al.  Streaming of interstellar grains in the Solar System , 1978, Nature.

[87]  J. Weingartner,et al.  Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud , 2001 .

[88]  N. Altobelli Monitoring of the Interstellar Dust Stream in the Inner Solar System Using Data of Different Spacecraft , 2004 .

[89]  W. Kratschmer,et al.  Dust in the local interstellar wind , 1999 .