Neuromorphic Photonic Integrated Circuits

This paper reviews some recent progress in the field of neuromorphic photonics, with a particular focus on scalability. We provide a framework for understanding the underlying models, and demonstrate a neuron-like processing device—an excitable laser—that has many favorable properties for integration with emerging photonic integrated circuit platforms. On a systems level, we compare several proposed interconnection frameworks that allow for fully tunable networks of photonic neurons.

[1]  Forrest N. Iandola,et al.  SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size , 2016, ArXiv.

[2]  Sae Woo Nam,et al.  Superconducting optoelectronic circuits for neuromorphic computing , 2016, ArXiv.

[3]  Raktim Haldar,et al.  Design of CMOS compatible and compact, thermally-compensated electro-optic modulator based on off-axis microring resonator for dense wavelength division multiplexing applications. , 2014, Optics express.

[4]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[5]  H. I. Cantu,et al.  Delayed Feedback Dynamics of Liénard-Type Resonant Tunneling-Photo-Detector Optoelectronic Oscillators , 2013, IEEE Journal of Quantum Electronics.

[6]  Paul R. Prucnal,et al.  Demonstration of a silicon photonic neural network , 2016, 2016 IEEE Photonics Society Summer Topical Meeting Series (SUM).

[7]  Paul R. Prucnal,et al.  An integrated analog O/E/O link for multi-channel laser neurons , 2016 .

[8]  J. Danckaert,et al.  Solitary and coupled semiconductor ring lasers as optical spiking neurons. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Paul R. Prucnal,et al.  Recent progress in semiconductor excitable lasers for photonic spike processing , 2016 .

[10]  P. Bienstman,et al.  Excitation transfer between optically injected microdisk lasers. , 2013, Optics express.

[11]  Dimitris Syvridis,et al.  Micro ring resonators as building blocks for an all-optical high-speed reservoir-computing bit-pattern-recognition system , 2013 .

[12]  Gabriel B. Mindlin,et al.  Interspike Time Distribution in Noise Driven Excitable Systems , 1999 .

[13]  Giovanni Giacomelli,et al.  Andronov bifurcation and excitability in semiconductor lasers with optical feedback , 1997 .

[14]  B. Schrauwen,et al.  Cascadable excitability in microrings. , 2012, Optics express.

[15]  Antonio Hurtado,et al.  Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems , 2015, 1507.08176.

[16]  Michael R. Watts,et al.  Ultralow-loss silicon ring resonators , 2012 .

[17]  Mario Dagenais,et al.  Optical injection induced polarization bistability in vertical‐cavity surface‐emitting lasers , 1993 .

[18]  J. Danckaert,et al.  Excitability in semiconductor microring lasers: Experimental and theoretical pulse characterization , 2010, 1108.3704.

[19]  Hans Wenzel,et al.  Mechanisms of fast self pulsations in two-section DFB lasers , 1996 .

[20]  Thomas Ferreira de Lima,et al.  Multi-channel control for microring weight banks. , 2016, Optics express.

[21]  Antonio Hurtado,et al.  Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems , 2012 .

[22]  L. Chrostowski,et al.  Silicon Photonics Design: From Devices to Systems , 2015 .

[23]  S. Strogatz Exploring complex networks , 2001, Nature.

[24]  P. Monnier,et al.  Fast thermo-optical excitability in a two-dimensional photonic crystal. , 2006, Physical review letters.

[25]  Paul R. Prucnal,et al.  Progress in neuromorphic photonics , 2017 .

[26]  Steve B. Furber,et al.  The SpiNNaker Project , 2014, Proceedings of the IEEE.

[27]  Tymon Barwicz,et al.  Accurate resonant frequency spacing of microring filters without postfabrication trimming , 2006 .

[28]  Paul R. Prucnal,et al.  Broadcast and Weight: An Integrated Network For Scalable Photonic Spike Processing , 2014, Journal of Lightwave Technology.

[29]  Paul R. Prucnal,et al.  A receiver-less link for excitable laser neurons: Design and simulation , 2015, 2015 IEEE Summer Topicals Meeting Series (SUM).

[30]  Ellen Zhou,et al.  Neuromorphic photonic networks using silicon photonic weight banks , 2017, Scientific Reports.

[31]  Harald Haas,et al.  Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication , 2004, Science.

[32]  D. Miller,et al.  The role of optics in computing , 2010 .

[33]  M. Mohrle,et al.  Gigahertz self-pulsation in 1.5 mu m wavelength multisection DFB lasers , 1992, IEEE Photonics Technology Letters.

[34]  Miguel A. Larotonda,et al.  Experimental investigation on excitability in a laser with a saturable absorber , 2002 .

[35]  Wei Pan,et al.  Cascadable Neuron-Like Spiking Dynamics in Coupled VCSELs Subject to Orthogonally Polarized Optical Pulse Injection , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[36]  Thomas Ferreira de Lima,et al.  Excitable laser processing network node in hybrid silicon: analysis and simulation. , 2015, Optics express.

[37]  Alejandro M. Yacomotti,et al.  All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal , 2006 .

[38]  J. Danckaert,et al.  Optical injection in semiconductor ring lasers , 2009 .

[39]  J. Bowers,et al.  Hybrid silicon evanescent devices , 2007 .

[40]  Serge Massar,et al.  All-optical Reservoir Computing , 2012, Optics express.

[41]  L. Larger,et al.  Optoelectronic reservoir computing: tackling noise-induced performance degradation. , 2013, Optics express.

[42]  B Krauskopf,et al.  Excitability and coherence resonance in lasers with saturable absorber. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  M. C. Soriano,et al.  A Unified Framework for Reservoir Computing and Extreme Learning Machines based on a Single Time-delayed Neuron , 2015, Scientific Reports.

[44]  R Kuszelewicz,et al.  Relative refractory period in an excitable semiconductor laser. , 2014, Physical review letters.

[45]  Jens H. Schmid,et al.  Roadmap on silicon photonics , 2016 .

[46]  M. Connelly Wideband semiconductor optical amplifier steady-state numerical model , 2001 .

[47]  Ingo Fischer,et al.  Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime. , 2001 .

[48]  D. Brady,et al.  Adaptive optical networks using photorefractive crystals. , 1988, Applied optics.

[49]  Ying Li,et al.  Simulating the spiking response of VCSEL-based optical spiking neuron , 2018 .

[50]  Serge Massar,et al.  Fully analogue photonic reservoir computer , 2016, Scientific Reports.

[51]  Joseph M. Kahn,et al.  Differential pulse-position modulation for power-efficient optical communication , 1999, IEEE Trans. Commun..

[52]  Robert W. Keyes,et al.  Optical Logic-in the Light of Computer Technology , 1985 .

[53]  B Kelleher,et al.  Incoherent optical triggering of excitable pulses in an injection-locked semiconductor laser. , 2014, Optics letters.

[54]  David A. B. Miller,et al.  Perfect optics with imperfect components , 2015 .

[55]  Giacomelli,et al.  Experimental evidence of coherence resonance in an optical system , 2000, Physical review letters.

[56]  L. Gelens,et al.  Oscillations and multistability in two semiconductor ring lasers coupled by a single waveguide , 2013 .

[57]  R Kuszelewicz,et al.  Temporal summation in a neuromimetic micropillar laser. , 2015, Optics letters.

[58]  J. Javaloyes,et al.  Topological solitons as addressable phase bits in a driven laser , 2014, Nature Communications.

[59]  David A. B. Miller Attojoule Optoelectronics for Low-Energy Information Processing and Communications , 2017, Journal of Lightwave Technology.

[60]  Sebastian Wieczorek,et al.  Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems , 2003 .

[61]  Paul R Prucnal,et al.  SIMPEL: circuit model for photonic spike processing laser neurons. , 2014, Optics express.

[62]  B. Krauskopf,et al.  Self-pulsations of lasers with saturable absorber: dynamics and bifurcations , 1999 .

[63]  Paul R. Prucnal,et al.  Simulations of a graphene excitable laser for spike processing , 2014 .

[64]  Benjamin Schrauwen,et al.  An experimental unification of reservoir computing methods , 2007, Neural Networks.

[65]  Salvador Balle,et al.  Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors. , 2013, Optics express.

[66]  B. Romeira,et al.  Regenerative memory in time-delayed neuromorphic photonic resonators , 2016, Scientific Reports.

[67]  Laurent Larger,et al.  Photonic nonlinear transient computing with multiple-delay wavelength dynamics. , 2012, Physical review letters.

[68]  Yue Tian,et al.  Signal feature recognition based on lightwave neuromorphic signal processing. , 2011, Optics letters.

[69]  Salvador Balle,et al.  Excitable optical waves in semiconductor microcavities. , 2005, Physical review letters.

[70]  Daniel Brunner,et al.  Parallel photonic information processing at gigabyte per second data rates using transient states , 2013, Nature Communications.

[71]  Daan Lenstra,et al.  The dynamical complexity of optically injected semiconductor lasers , 2005 .

[72]  Yuichi Tohmori,et al.  40 Gbit/s n–i–n InP Mach–Zehnder modulator with a π voltage of 2.2 V , 2003 .

[73]  Benjamin Schrauwen,et al.  Parallel Reservoir Computing Using Optical Amplifiers , 2011, IEEE Transactions on Neural Networks.

[74]  P. R. Prucnal,et al.  A Leaky Integrate-and-Fire Laser Neuron for Ultrafast Cognitive Computing , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[75]  Russell Reed,et al.  Pruning algorithms-a survey , 1993, IEEE Trans. Neural Networks.

[76]  Rüdiger Paschotta,et al.  Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers , 2001 .

[77]  N. Harris,et al.  Efficient, compact and low loss thermo-optic phase shifter in silicon. , 2014, Optics express.

[78]  Paul R. Prucnal,et al.  Spike processing with a graphene excitable laser , 2016, Scientific Reports.

[79]  Gary J. Balas,et al.  Receding horizon control of an F-16 aircraft: A comparative study , 2006 .

[80]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[81]  I. Sagnes,et al.  Excitability and self-pulsing in a photonic crystal nanocavity , 2012 .

[82]  M Giudici,et al.  Control of excitable pulses in an injection-locked semiconductor laser. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[83]  Sylvain Barbay,et al.  Control of cavity solitons and dynamical states in a monolithic vertical cavity laser with saturable absorber , 2010 .

[84]  H. John,et al.  Why future supercomputing requires optics , 2010 .

[85]  Daan Lenstra,et al.  Full length article A unifying view of bifurcations in a semiconductor laser subject to optical injection , 1999 .

[86]  M. J. Adams,et al.  Dynamics of Polarized Optical Injection in 1550-nm VCSELs: Theory and Experiments , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[87]  B Kelleher,et al.  Excitation regeneration in delay-coupled oscillators. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[88]  William J. Dally,et al.  GPUs and the Future of Parallel Computing , 2011, IEEE Micro.

[89]  Andrea Fiore,et al.  Nano-opto-electro-mechanical systems , 2018, Nature Nanotechnology.

[90]  Salvador Balle,et al.  Experimental evidence of van der Pol-Fitzhugh-Nagumo dynamics in semiconductor optical amplifiers. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[91]  Yasuhiko Arakawa,et al.  Silicon photonics for next generation system integration platform , 2013, IEEE Communications Magazine.

[92]  Tamas Vicsek Complexity: The bigger picture , 2002, Nature.

[93]  Paul R. Prucnal,et al.  Microring Weight Banks , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[94]  A. Biberman,et al.  An ultralow power athermal silicon modulator , 2014, Nature Communications.

[95]  Geert Morthier,et al.  Experimental demonstration of reservoir computing on a silicon photonics chip , 2014, Nature Communications.

[96]  Joni Dambre,et al.  Excitability in optically injected microdisk lasers with phase controlled excitatory and inhibitory response. , 2013, Optics express.

[97]  J. Bowers,et al.  III‐V/silicon photonics for on‐chip and intra‐chip optical interconnects , 2010 .

[98]  Miguel C. Soriano,et al.  Minimal approach to neuro-inspired information processing , 2015, Front. Comput. Neurosci..

[99]  Cristina Masoller,et al.  Unveiling the complex organization of recurrent patterns in spiking dynamical systems , 2014, Scientific Reports.

[100]  Jie Sun,et al.  Open Foundry Platform for High-performance Electronic-photonic Integration References and Links , 2022 .

[101]  C. Lynch Big data: How do your data grow? , 2008, Nature.

[102]  M. C. Soriano,et al.  Information Processing Using Transient Dynamics of Semiconductor Lasers Subject to Delayed Feedback , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[103]  P. Prucnal,et al.  NEUROMORPHIC PHOTONICS , 2017 .

[104]  Sylvain Barbay,et al.  Excitability in a semiconductor laser with saturable absorber. , 2011, Optics letters.

[105]  Paul R. Prucnal,et al.  Continuous Calibration of Microring Weights for Analog Optical Networks , 2016, IEEE Photonics Technology Letters.

[106]  S. Bischoff,et al.  Analytical expression for the bit error rate of cascaded all-optical regenerators , 2003, IEEE Photonics Technology Letters.

[107]  Neil Mathur,et al.  Nanotechnology: Beyond the silicon roadmap , 2002, Nature.

[108]  M Radziunas,et al.  Excitability of a semiconductor laser by a two-mode homoclinic bifurcation. , 2001, Physical review letters.

[109]  Anthony N. Burkitt,et al.  Analysis of Integrate-and-Fire Neurons: Synchronization of Synaptic Input and Spike Output , 1999, Neural Computation.

[110]  Daan Lenstra,et al.  Multipulse excitability in a semiconductor laser with optical injection. , 2002, Physical review letters.

[111]  Mindaugas Radziunas,et al.  Excitability of lasers with integrated dispersive reflector , 2001, SPIE OPTO.

[112]  B Kelleher,et al.  Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[113]  L Pesquera,et al.  Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. , 2012, Optics express.

[114]  Mahmut T. Kandemir,et al.  Leakage Current: Moore's Law Meets Static Power , 2003, Computer.

[115]  J. Manyika Big data: The next frontier for innovation, competition, and productivity , 2011 .

[116]  Benjamin Schrauwen,et al.  Optoelectronic Reservoir Computing , 2011, Scientific Reports.

[117]  Cristina Masoller,et al.  Effects of periodic forcing on the temporally correlated spikes of a semiconductor laser with feedback. , 2015, Optics express.

[118]  Rahul Sarpeshkar,et al.  Analog Versus Digital: Extrapolating from Electronics to Neurobiology , 1998, Neural Computation.

[119]  D Goulding,et al.  Excitability in a quantum dot semiconductor laser with optical injection. , 2007, Physical review letters.

[120]  L. Appeltant,et al.  Information processing using a single dynamical node as complex system , 2011, Nature communications.

[121]  Antonio Hurtado,et al.  Optical neuron using polarisation switching in a 1550nm-VCSEL. , 2010, Optics express.

[122]  Kaushik Roy,et al.  An All-Memristor Deep Spiking Neural Network: A Step Towards Realizing the Low Power, Stochastic Brain , 2017, ArXiv.