A Computational Interpretation of Forcing in Type Theory
暂无分享,去创建一个
[1] Thierry Coquand,et al. A Note on Forcing and Type Theory , 2010, Fundam. Informaticae.
[2] Alonzo Church,et al. The Impact of the Lambda Calculus , 2014 .
[3] L. Brouwer. Über Definitionsbereiche von- Funktionen , 1927 .
[4] Kurt Gödel,et al. On a hitherto unexploited extension of the finitary standpoint , 1980, J. Philos. Log..
[5] A. Troelstra,et al. Constructivism in Mathematics: An Introduction , 1988 .
[6] Program. FOUNDATIONS OF CONSTRUCTIVE MATHEMATICS , 2014 .
[7] Errett Bishop,et al. Mathematics as a Numerical Language , 1970 .
[8] Martín Hötzel Escardó,et al. Infinite sets that admit fast exhaustive search , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).
[9] C. McCarty. CONSTRUCTIVISM IN MATHEMATICS , 2009 .
[10] Nicolas D. Goodman. Relativized Realizability in Intuitionistic Arithmetic of All Finite Types , 1978, J. Symb. Log..
[11] Alex K. Simpson,et al. Lazy Functional Algorithms for Exact Real Functionals , 1998, MFCS.
[12] Paul Cohen,et al. The Discovery of Forcing , 2002 .
[13] Akiko Kino,et al. Intuitionism and Proof Theory , 1970 .
[14] Philip Wadler,et al. The essence of functional programming , 1992, POPL '92.
[15] Jean-Louis Krivine. Structures de réalisabilité, RAM et ultrafiltre sur N , 2008, ArXiv.
[16] Jean-Pierre Bourguignon,et al. Mathematische Annalen , 1893 .
[17] Hendrik Pieter Barendregt,et al. The Impact of the Lambda Calculus in Logic and Computer Science , 1997, Bulletin of Symbolic Logic.