A Computational Interpretation of Forcing in Type Theory

In a previous work, we showed the uniform continuity of definable functionals in intuitionistic type theory as an application of forcing with dependent types. The argument was constructive, and so contains implicitly an algorithm which computes a witness that a given functional is uniformly continuous. We present here such an algorithm, which provides a possible computational interpretation of forcing.

[1]  Thierry Coquand,et al.  A Note on Forcing and Type Theory , 2010, Fundam. Informaticae.

[2]  Alonzo Church,et al.  The Impact of the Lambda Calculus , 2014 .

[3]  L. Brouwer Über Definitionsbereiche von- Funktionen , 1927 .

[4]  Kurt Gödel,et al.  On a hitherto unexploited extension of the finitary standpoint , 1980, J. Philos. Log..

[5]  A. Troelstra,et al.  Constructivism in Mathematics: An Introduction , 1988 .

[6]  Program FOUNDATIONS OF CONSTRUCTIVE MATHEMATICS , 2014 .

[7]  Errett Bishop,et al.  Mathematics as a Numerical Language , 1970 .

[8]  Martín Hötzel Escardó,et al.  Infinite sets that admit fast exhaustive search , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[9]  C. McCarty CONSTRUCTIVISM IN MATHEMATICS , 2009 .

[10]  Nicolas D. Goodman Relativized Realizability in Intuitionistic Arithmetic of All Finite Types , 1978, J. Symb. Log..

[11]  Alex K. Simpson,et al.  Lazy Functional Algorithms for Exact Real Functionals , 1998, MFCS.

[12]  Paul Cohen,et al.  The Discovery of Forcing , 2002 .

[13]  Akiko Kino,et al.  Intuitionism and Proof Theory , 1970 .

[14]  Philip Wadler,et al.  The essence of functional programming , 1992, POPL '92.

[15]  Jean-Louis Krivine Structures de réalisabilité, RAM et ultrafiltre sur N , 2008, ArXiv.

[16]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[17]  Hendrik Pieter Barendregt,et al.  The Impact of the Lambda Calculus in Logic and Computer Science , 1997, Bulletin of Symbolic Logic.