Module Checking of Strategic Ability

Module checking is a decision problem proposed in late 1990s to formalize verification of open systems, i.e., systems that must adapt their behavior to the input they receive from the environment. It was recently shown that module checking offers a distinctly different perspective from the better-known problem of model checking. So far, specifications in temporal logic CTL have been used for module checking. In this paper, we extend module checking to handle specifications in alternating-time temporal logic (ATL). We define the semantics of ATL module checking, and show that its expressivity strictly extends that of CTL module checking, as well as that of ATL itself. At the same time, we show that ATL module checking enjoys the same computational complexity as CTL module checking. We also investigate a variant of ATL module checking where the environment acts under uncertainty. Finally, we revisit the semantics of ability in the module checking problem, and propose a variant where strategies of agents in the module depend only on what the agents are able to observe.

[1]  Laura Bozzelli New results on pushdown module checking with imperfect information , 2011, GandALF.

[2]  Patrice Godefroid,et al.  Reasoning about Abstract Open Systems with Generalized Module Checking , 2003, EMSOFT.

[3]  Wojciech Jamroga,et al.  On module checking and strategies , 2014, AAMAS.

[4]  Orna Kupferman,et al.  Augmenting Branching Temporal Logics with Existential Quantification over Atomic Propositions , 1995, J. Log. Comput..

[5]  Jaakko Hintikka,et al.  Game-theoretical semantics: insights and prospects , 1982, Notre Dame J. Formal Log..

[6]  Aniello Murano,et al.  Reasoning About Strategies: On the Model-Checking Problem , 2011, ArXiv.

[7]  Pierre Wolper,et al.  An automata-theoretic approach to branching-time model checking , 2000, JACM.

[8]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching Time Temporal Logic , 2008, 25 Years of Model Checking.

[9]  Margherita Napoli,et al.  Program Complexity in Hierarchical Module Checking , 2008, LPAR.

[10]  Samik Basu,et al.  Local Module Checking for CTL Specifications , 2007, Electron. Notes Theor. Comput. Sci..

[11]  Edmund M. Clarke,et al.  Model Checking , 1999, Handbook of Automated Reasoning.

[12]  Radha Jagadeesan,et al.  Three-valued abstractions of games: uncertainty, but with precision , 2004, LICS 2004.

[13]  Orna Kupferman,et al.  Module Checking Revisited , 1997, CAV.

[14]  Arnaud Da Costa Lopes,et al.  Quantified CTL: Expressiveness and Model Checking - (Extended Abstract) , 2012, CONCUR.

[15]  Wojciech Jamroga,et al.  ATL* With Truly Perfect Recall: Expressivity and Validities , 2014, ECAI.

[16]  E. Allen Emerson,et al.  Tree automata, mu-calculus and determinacy , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[17]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[18]  Michael Huth,et al.  Model checking vs. generalized model checking: semantic minimizations for temporal logics , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[19]  Joseph Y. Halpern,et al.  “Sometimes” and “not never” revisited: on branching versus linear time temporal logic , 1986, JACM.

[20]  Thomas A. Henzinger,et al.  Alternating-time temporal logic , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[21]  Mimmo Parente,et al.  Enriched µ-Calculi Module Checking , 2007, Log. Methods Comput. Sci..

[22]  Pierre Wolper,et al.  Automata theoretic techniques for modal logics of programs: (Extended abstract) , 1984, STOC '84.

[23]  Radha Jagadeesan,et al.  Three-valued abstractions of games: uncertainty, but with precision , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[24]  Mimmo Parente,et al.  Enriched MU-Calculi Module Checking , 2008, ArXiv.

[25]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[26]  Aniello Murano,et al.  Pushdown module checking with imperfect information , 2007, Inf. Comput..

[27]  Wojciech Jamroga,et al.  Alternating-time temporal logics with irrevocable strategies , 2007, TARK '07.

[28]  Aniello Murano,et al.  Pushdown module checking , 2010, Formal Methods Syst. Des..

[29]  Fabio Martinelli,et al.  An Approach for the Specification, Verification and Synthesis of Secure Systems , 2007, VODCA@FOSAD.

[30]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[31]  Nicolas Markey,et al.  Quantified CTL: Expressiveness and Model Checking - (Extended Abstract) , 2012, CONCUR.

[32]  Aniello Murano,et al.  What Makes Atl* Decidable? A Decidable Fragment of Strategy Logic , 2012, CONCUR.

[33]  Klaus Schneider,et al.  Modular Verification of Synchronous Programs , 2013, 2013 13th International Conference on Application of Concurrency to System Design.

[34]  Orna Kupferman,et al.  Module Checking , 1996, Inf. Comput..