Visual tracking of mobile robots in formation

This paper presents a vision-based architecture for mobile robot detection and tracking from single frames using off-the-shelf mobile cameras and fiducial markers. A dual unscented Kalman filter is developed to estimate relative position, bearing, heading angles, and leader's velocities. The final goal of this framework is to support the design of robust vision-based algorithms to solve multi-robot coordination problems by eliminating the need of inter-vehicle communication. Simulation results verify the validity of the described architecture.

[1]  Ivan Poupyrev,et al.  Virtual object manipulation on a table-top AR environment , 2000, Proceedings IEEE and ACM International Symposium on Augmented Reality (ISAR 2000).

[2]  Youngjoon Han,et al.  Visual tracking of a moving target using active contour based SSD algorithm , 2005, Robotics Auton. Syst..

[3]  Thomas S. Huang,et al.  Motion and structure from feature correspondences: a review , 1994, Proc. IEEE.

[4]  Kin Hong Wong,et al.  Model reconstruction and pose acquisition using extended Lowe's method , 2005, IEEE Transactions on Multimedia.

[5]  Andrew W. Fitzgibbon,et al.  Reliable Automatic Calibration of a Marker-Based Position Tracking System , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[6]  Rafael Fierro,et al.  An output feedback nonlinear decentralized controller for unmanned vehicle co‐ordination , 2007 .

[7]  Warren E. Dixon,et al.  Homography-based visual servo tracking control of a wheeled mobile robot , 2006, IEEE Transactions on Robotics.

[8]  Tom Davis,et al.  Opengl programming guide: the official guide to learning opengl , 1993 .

[9]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[10]  H. Musoff,et al.  Unscented Kalman Filter , 2015 .

[11]  S. Shankar Sastry,et al.  Vision-based follow-the-leader , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[12]  Tom Davis,et al.  OpenGL(R) Programming Guide: The Official Guide to Learning OpenGL(R), Version 2 (5th Edition) (OpenGL) , 2005 .

[13]  Mark Fiala Vision guided control of multiple robots , 2004, First Canadian Conference on Computer and Robot Vision, 2004. Proceedings..

[14]  R. Fierro,et al.  Robust vision-based nonlinear formation control , 2006, 2006 American Control Conference.

[15]  Kostas Daniilidis,et al.  Vision-based control laws for distributed flocking of nonholonomic agents , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[16]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[17]  X.T. Zhang An output feedback nonlinear decentralized controller design for multiple unmanned vehicle coordination , 2006, 2006 American Control Conference.

[18]  Philip David,et al.  SoftPOSIT: Simultaneous Pose and Correspondence Determination , 2002, International Journal of Computer Vision.

[19]  James J. Little,et al.  Vision-based global localization and mapping for mobile robots , 2005, IEEE Transactions on Robotics.