Crystallization kinetics of melt-mixed 3D hierarchical graphene/polypropylene nanocomposites at processing-relevant cooling rates

[1]  A. Müller,et al.  Continuous Cooling Curve Diagrams of Isotactic-Polypropylene/Polyethylene Blends: Mutual Nucleating Effects under Fast Cooling Conditions , 2021 .

[2]  D. Cavallo,et al.  Instrument for mimicking fast cooling conditions of polymers: Design and case studies on polypropylene , 2021 .

[3]  S. Irusta,et al.  Tailoring the rheology and electrical properties of polyamide 66 nanocomposites with hybrid filler approach: graphene and carbon nanotubes , 2021 .

[4]  Roland Kádár,et al.  Mechanical Behavior of Melt-Mixed 3D Hierarchical Graphene/Polypropylene Nanocomposites , 2020, Polymers.

[5]  Roland Kádár,et al.  Nonlinear “oddities” at the percolation of 3D hierarchical graphene polymer nanocomposites , 2020, Rheologica Acta.

[6]  A. Derouiche,et al.  Precontrolled Alignment of Graphite Nanoplatelets in Polymeric Composites Prevents Bacterial Attachment. , 2020, Small.

[7]  Roland Kádár,et al.  Melt-Mixed 3D Hierarchical Graphene/Polypropylene Nanocomposites with Low Electrical Percolation Threshold , 2019, Nanomaterials.

[8]  Paolo Moretti,et al.  Estimating the Nucleation Ability of Various Surfaces Towards Isotactic Polypropylene via Light Intensity Induction Time Measurements , 2019, Entropy.

[9]  I. Mijakovic,et al.  Antibacterial effect of boron nitride flakes with controlled orientation in polymer composites , 2019, RSC advances.

[10]  Qiang Xu,et al.  Improving the Quantum Capacitance of Graphene-Based Supercapacitors by the Doping and Co-Doping: First-Principles Calculations , 2019, ACS omega.

[11]  R. Androsch,et al.  Effect of supercooling on crystal structure of nucleated isotactic polypropylene , 2019, Thermochimica Acta.

[12]  Aldo Di Carlo,et al.  Two-Dimensional Material Interface Engineering for Efficient Perovskite Large-Area Modules , 2019, ACS Energy Letters.

[13]  Li Lin,et al.  Synthesis challenges for graphene industry , 2019, Nature Materials.

[14]  D. Tranchida,et al.  Influence of 2,1‐erythro regiodefects on the crystallization behavior of isotactic polypropylene , 2018, POLYMER CRYSTALLIZATION.

[15]  D. Tranchida,et al.  Designing polymer crystallinity: An industrial perspective , 2018, POLYMER CRYSTALLIZATION.

[16]  C. Kapusta,et al.  Graphene nanoplatelet-silica hybrid epoxy composites as electrical insulation with enhanced thermal conductivity , 2018 .

[17]  M. Röding,et al.  Computational Screening of Diffusive Transport in Nanoplatelet-Filled Composites: Use of Graphene To Enhance Polymer Barrier Properties , 2017, ACS Applied Nano Materials.

[18]  G. Saracco,et al.  Supernucleation and Orientation of Poly(butylene terephthalate) Crystals in Nanocomposites Containing Highly Reduced Graphene Oxide , 2017, Macromolecules.

[19]  D. Tranchida,et al.  A critical approach to the Kissinger analysis for studying non-isothermal crystallization of polymers , 2017, Journal of Thermal Analysis and Calorimetry.

[20]  R. Girolamo,et al.  Tailoring the properties of polypropylene in the polymerization reactor using polymeric nucleating agents as prepolymers on the Ziegler–Natta catalyst granule , 2017 .

[21]  S. Gubanski,et al.  Electrical, Mechanical, and Thermal Properties of LDPE Graphene Nanoplatelets Composites Produced by Means of Melt Extrusion Process , 2017, Polymers.

[22]  M. Rigdahl,et al.  Enhancing the electrical conductivity of carbon black/graphite nanoplatelets: Poly(ethylene-butyl acrylate) composites by melt extrusion , 2016 .

[23]  E. Coughlin,et al.  In-situ polymerization of isotactic polypropylene-nanographite nanocomposites , 2015 .

[24]  I. Harrison,et al.  Nanocomposites of graphene/polymers: a review , 2015 .

[25]  C. Han,et al.  Crystallization behaviors in the isotactic polypropylene/graphene composites , 2014 .

[26]  Thomas Gkourmpis CARBON-BASED HIGH ASPECT RATIO POLYMER NANOCOMPOSITES , 2013 .

[27]  Jiahua Zhu,et al.  An overview of the engineered graphene nanostructures and nanocomposites , 2013 .

[28]  Nilesh Patil,et al.  Influence of a particulate nucleating agent on the quiescent and flow-induced crystallization of isotactic polypropylene , 2013 .

[29]  C. Svanberg,et al.  Improved electrical and flow properties of conductive polyolefin blends: Modification of poly(ethylene vinyl acetate) copolymer/carbon black with ethylene–propylene copolymer , 2013 .

[30]  C. Han,et al.  Interpenetrating network formation in isotactic polypropylene/graphene composites , 2013 .

[31]  R. Girolamo,et al.  Morphology and Mechanical Properties of the Mesomorphic Form of Isotactic Polypropylene in Stereodefective Polypropylene , 2013 .

[32]  T. Das,et al.  Graphene-Based Polymer Composites and Their Applications , 2013 .

[33]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[34]  G. Zhong,et al.  Isothermal and nonisothermal crystallization of isotactic polypropylene/graphene oxide nanosheet nanocomposites , 2012, Journal of Polymer Research.

[35]  Huang Wu,et al.  Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties , 2012 .

[36]  G. Zhong,et al.  Graphene Oxide Nanosheet Induced Intrachain Conformational Ordering in a Semicrystalline Polymer. , 2012, The journal of physical chemistry letters.

[37]  P. Dubois,et al.  Supernucleation and crystallization regime change provoked by MWNT addition to poly(ε-caprolactone) , 2012 .

[38]  Petra Pötschke,et al.  Establishment, morphology and properties of carbon nanotube networks in polymer melts , 2012 .

[39]  A. Balandin,et al.  Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. , 2012, Nano letters.

[40]  B. Li,et al.  Review on polymer/graphite nanoplatelet nanocomposites , 2011, Journal of Materials Science.

[41]  A. Müller,et al.  Super-nucleation in nanocomposites and confinement effects on the crystallizable components within block copolymers, miktoarm star copolymers and nanocomposites , 2011 .

[42]  C. Chen,et al.  Graphene Nanosheets and Shear Flow Induced Crystallization in Isotactic Polypropylene Nanocomposites , 2011 .

[43]  S. Kheirandish,et al.  Nucleation of Polypropylene Homo- and Copolymers , 2011 .

[44]  R. Ruoff,et al.  Graphene-based polymer nanocomposites , 2011 .

[45]  G. Peters,et al.  Real-Time WAXD Detection of Mesophase Development during Quenching of Propene/Ethylene Copolymers , 2010 .

[46]  C. Macosko,et al.  Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity , 2010 .

[47]  T. Chen,et al.  Isothermal Crystallization of Poly(l-lactide) Induced by Graphene Nanosheets and Carbon Nanotubes: A Comparative Study , 2010 .

[48]  C. Macosko,et al.  Graphene/Polymer Nanocomposites , 2010 .

[49]  G. Peters,et al.  Continuous Cooling Curves Diagrams of Propene/Ethylene Random Copolymers. The Role of Ethylene Counits in Mesophase Development , 2010 .

[50]  B. Pukánszky,et al.  The influence of nucleus density on optical properties in nucleated isotactic polypropylene , 2009 .

[51]  M. Taghioskoui Trends in graphene research , 2009 .

[52]  Christopher W. Macosko,et al.  Processing-property relationships of polycarbonate/graphene composites , 2009 .

[53]  Y. Geng,et al.  Origin of Carbon Nanotubes Induced Poly(l-Lactide) Crystallization: Surface Induced Conformational Order , 2009 .

[54]  L. Drzal,et al.  Multifunctional xGnP/LLDPE Nanocomposites Prepared by Solution Compounding Using Various Screw Rotating Systems , 2009 .

[55]  J. Loos,et al.  Carbon Nanotube/Isotactic Polypropylene Composites Prepared by Latex Technology : Morphology Analysis of CNT-Induced Nucleation , 2008 .

[56]  J. Loos,et al.  Isotactic polypropylene/carbon nanotube composites prepared by latex technology. Thermal analysis of carbon nanotube-induced nucleation , 2008 .

[57]  L. Robeson,et al.  Polymer nanotechnology: Nanocomposites , 2008 .

[58]  C. Macosko,et al.  Morphology and Properties of Polyester/Exfoliated Graphite Nanocomposites , 2008 .

[59]  P. J. Phillips,et al.  Crystallization kinetics of linear polyethylene : The maximum in crystal growth rate-temperature dependence , 2008 .

[60]  N. Garti,et al.  Advanced nucleating agents for polypropylene , 2007 .

[61]  Lawrence T. Drzal,et al.  A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold , 2007 .

[62]  Darrin J. Pochan,et al.  Polymer Nanocomposites for Biomedical Applications , 2007 .

[63]  S. Stankovich,et al.  Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate) , 2006 .

[64]  R. Androsch,et al.  Morphology, reorganization and stability of mesomorphic nanocrystals in isotactic polypropylene , 2006 .

[65]  K. Nishida,et al.  Crystallization of Isotactic Polypropylene from Prequenched Mesomorphic Phase , 2006 .

[66]  G. Michler,et al.  Phase interactions and structure evolution of heterophasic ethylene–propylene copolymers as a function of system composition , 2006 .

[67]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[68]  B. Lotz,et al.  Structural matching between the polymeric nucleating agent isotactic poly(vinylcyclohexane) and isotactic polypropylene , 2006 .

[69]  P. M. Nedorezova,et al.  Homo-and copolymerization of vinylcyclohexane with α-olefins in the presence of heterogeneous and homogeneous catalytic systems , 2006 .

[70]  T. Tervoort,et al.  Mechanical Properties of Sorbitol-Clarified Isotactic Polypropylene: Influence of Additive Concentration on Polymer Structure and Yield Behavior , 2005 .

[71]  Pj Piet Lemstra,et al.  Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene , 2005 .

[72]  B. Simard,et al.  Effect of carbon nanotubes on the crystallization and properties of polypropylene , 2005 .

[73]  Petra Pötschke,et al.  Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites , 2004 .

[74]  I. Balberg,et al.  PERCOLATION AND TUNNELING IN COMPOSITE MATERIALS , 2004 .

[75]  Jan-Chan Huang,et al.  Carbon black filled conducting polymers and polymer blends , 2002 .

[76]  V. Carrubba,et al.  An experimental methodology to study polymer crystallization under processing conditions. The influence of high cooling rates , 2002 .

[77]  M. A. Gómez,et al.  Comparative study of the nucleation activity of third‐generation sorbitol‐based nucleating agents for isotactic polypropylene , 2002 .

[78]  R. Spontak,et al.  Volume‐exclusion effects in polyethylene blends filled with carbon black, graphite, or carbon fiber , 2002 .

[79]  S. Salvi,et al.  Talc as nucleating agent of polypropylene: morphology induced by lamellar particles addition and interface mineral-matrix modelization , 2002 .

[80]  I. Sajó,et al.  NUCLEATING EFFECT OF MONTMORILLONITE NANOPARTICLES IN POLYPROPYLENE , 2002 .

[81]  A. Kawaguchi,et al.  Epitaxial act of sodium 2,2′-methylene-bis-(4,6-di-t-butylphenylene)phosphate on isotactic polypropylene , 2001 .

[82]  P. J. Phillips,et al.  The mechanism of crystallization of linear polyethylene, and its copolymers with octene, over a wide range of supercoolings , 2001 .

[83]  G. Titomanlio,et al.  Crystallization kinetics of iPP. Model and experiments , 2001 .

[84]  S. Piccarolo,et al.  Competition between α and γ phases in isotactic polypropylene : effects of ethylene content and nucleating agents at different cooling rates , 2001 .

[85]  S. Piccarolo,et al.  SAXS/WAXS study of the annealing process in quenched samples of isotactic poly(propylene) , 1999 .

[86]  S. Piccarolo,et al.  The X-ray determination of the amounts of the phases in samples of isotactic poly(propylene) quenched from the melt at different cooling rates , 1997 .

[87]  B. Pukánszky,et al.  Relation of crystalline structure and mechanical properties of nucleated polypropylene , 1996 .

[88]  J. Spruiell,et al.  An experimental method for studying nonisothermal crystallization of polymers at very high cooling rates , 1996 .

[89]  Chi Wang,et al.  Transcrystallization of PTFE fiber/PP composites (I) crystallization kinetics and morphology , 1996 .

[90]  A. Thierry,et al.  Self‐nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric “efficiency scale” and evaluation of nucleating additives in isotactic polypropylene (α phase) , 1993 .

[91]  A. Thierry,et al.  Self‐nucleation and recrystallization of isotactic polypropylene (α phase) investigated by differential scanning calorimetry , 1993 .

[92]  S. Piccarolo Morphological changes in isotactic polypropylene as a function of cooling rate , 1992 .

[93]  Valerio Brucato,et al.  Crystallization of Polymer Melts Under Fast Cooling. II. High-Purity iPP , 1992 .

[94]  H. Ishida,et al.  Surface induced crystallization in ultrahigh-modulus polyethylene fiber-reinforced polyethylene composites , 1991 .

[95]  H. E. Kissinger Variation of Peak Temperature With Heating Rate in Differential Thermal Analysis , 1956 .

[96]  Jason J. Williams,et al.  Skin/core crystallinity of injection-molded poly (butylene terephthalate) as revealed by microfocus X-ray diffraction and fast scanning chip calorimetry , 2016, Journal of Thermal Analysis and Calorimetry.

[97]  Thomas Gkourmpis Electrically Conductive Polymer Nanocomposites , 2016 .

[98]  M. Rigdahl,et al.  Effect of carbon black on electrical and rheological properties of graphite nanoplatelets/poly(ethylene-butyl acrylate) composites , 2015 .

[99]  Jeffrey M. Cogen,et al.  Electrically Conductive Multiphase Polymer Blend Carbon-Based Composites , 2014 .

[100]  P. Revathi,et al.  Performance evaluation of high structure carbon black in different polymer blends , 2004 .

[101]  S. V. Meille,et al.  Polymorphism in isotactic polypropylene , 1991 .