Effects of dopaminergic modulation on the integrative properties of the ventral striatal medium spiny neuron.

Dopaminergic modulation produces a variety of functional changes in the principal cell of the striatum, the medium spiny neuron (MSN). Using a 189-compartment computational model of a ventral striatal MSN, we simulated whole cell D1- and D2-receptor-mediated modulation of both intrinsic (sodium, calcium, and potassium) and synaptic currents (AMPA and NMDA). Dopamine (DA) modulations in the model were based on a review of published experiments in both ventral and dorsal striatum. To objectively assess the net effects of DA modulation, we combined reported individual channel modulations into either D1- or D2-receptor modulation conditions and studied them separately. Contrary to previous suggestions, we found that D1 modulation had no effect on MSN nonlinearity and could not induce bistability. In agreement with previous suggestions, we found that dopaminergic modulation leads to changes in input filtering and neuronal excitability. Importantly, the changes in neuronal excitability agree with the classical model of basal ganglia function. We also found that DA modulation can alter the integration time window of the MSN. Interestingly, the effects of DA modulation of synaptic properties opposed the effects of DA modulation of intrinsic properties, with the synaptic modulations generally dominating the net effect. We interpret this lack of synergy to suggest that the regulation of whole cell integrative properties is not the primary functional purpose of DA. We suggest that D1 modulation might instead primarily regulate calcium influx to dendritic spines through NMDA and L-type calcium channels, by both direct and indirect mechanisms.

[1]  A. Grace,et al.  Dopamine-Dependent Interactions between Limbic and Prefrontal Cortical Plasticity in the Nucleus Accumbens: Disruption by Cocaine Sensitization , 2005, Neuron.

[2]  J. Harvey,et al.  Endogenous and exogenous dopamine depress EPSCs in rat nucleus accumbens in vitro via D1 receptors activation. , 1996, The Journal of physiology.

[3]  C. Cepeda,et al.  Dopamine and N-Methyl-D- Aspartate Receptor Interactions in the Neostriatum , 1998, Developmental Neuroscience.

[4]  D. Plenz,et al.  Dendritic Calcium Encodes Striatal Neuron Output during Up-States , 2002, The Journal of Neuroscience.

[5]  Charles J. Wilson,et al.  Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. , 1997, Journal of neurophysiology.

[6]  M. Umemiya,et al.  Dopaminergic modulation of excitatory postsynaptic currents in rat neostriatal neurons. , 1997, Journal of neurophysiology.

[7]  D. Sibley,et al.  Dopamine Reduction of GABA Currents in Striatal Medium-sized Spiny Neurons is Mediated Principally by the D1 Receptor Subtype , 2007, Neurochemical Research.

[8]  A. Grace,et al.  Physiological and morphological properties of accumbens core and shell neurons recorded in vitro , 1993, Synapse.

[9]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[10]  Peter Somogyi,et al.  Increased number of synaptic GABAA receptors underlies potentiation at hippocampal inhibitory synapses , 1998, Nature.

[11]  Paul Greengard,et al.  Dopamine enhancement of NMDA currents in dissociated medium-sized striatal neurons: role of D1 receptors and DARPP-32. , 2002, Journal of neurophysiology.

[12]  D. Surmeier,et al.  Isolation and characterization of a persistent potassium current in neostriatal neurons. , 1996, Journal of neurophysiology.

[13]  C. Gerfen,et al.  D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. , 1990, Science.

[14]  Charles J. Wilson,et al.  Selective blockade of a slowly inactivating potassium current in striatal neurons by (±) 6‐chloro‐APB hydrobromide (SKF82958) , 1998, Synapse.

[15]  J. Lübke,et al.  Functional Properties of AMPA and NMDA Receptors Expressed in Identified Types of Basal Ganglia Neurons , 1997, The Journal of Neuroscience.

[16]  J. Houk,et al.  Modulation of striatal single units by expected reward: a spiny neuron model displaying dopamine-induced bistability. , 2003, Journal of neurophysiology.

[17]  Michael L. Hines,et al.  The NEURON Book , 2006 .

[18]  J. Bargas,et al.  D1 Receptor Activation Enhances Evoked Discharge in Neostriatal Medium Spiny Neurons by Modulating an L-Type Ca2+ Conductance , 1997, The Journal of Neuroscience.

[19]  P. Sah,et al.  SK channels regulate excitatory synaptic transmission and plasticity in the lateral amygdala , 2005, Nature Neuroscience.

[20]  A. Grace Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: A hypothesis for the etiology of schizophrenia , 1991, Neuroscience.

[21]  J. Bargas,et al.  A reconfiguration of CaV2 Ca2+ channel current and its dopaminergic D2 modulation in developing neostriatal neurons. , 2005, Journal of neurophysiology.

[22]  H. C. Cromwell,et al.  Neuromodulatory actions of dopamine on synaptically‐evoked neostriatal responses in slices , 1996, Synapse.

[23]  D. Plenz,et al.  Action Potential Timing Determines Dendritic Calcium during Striatal Up-States , 2004, The Journal of Neuroscience.

[24]  Charles J. Wilson,et al.  GABAergic microcircuits in the neostriatum , 2004, Trends in Neurosciences.

[25]  J. Bargas,et al.  Spontaneous Voltage Oscillations in Striatal Projection Neurons in a Rat Corticostriatal Slice , 2003, The Journal of physiology.

[26]  J. Bargas,et al.  Inhibitory action of dopamine involves a subthreshold Cs+-sensitive conductance in neostriatal neurons , 1996, Experimental Brain Research.

[27]  Anthony A Grace,et al.  Gating of information flow within the limbic system and the pathophysiology of schizophrenia , 2000, Brain Research Reviews.

[28]  D. Plenz,et al.  Quantitative Estimate of Synaptic Inputs to Striatal Neurons during Up and Down States In Vitro , 2003, The Journal of Neuroscience.

[29]  S. Raghavachari,et al.  Gating information by two-state membrane potential fluctuations. , 2007, Journal of neurophysiology.

[30]  Y. Goto,et al.  Network Synchrony in the Nucleus Accumbens In Vivo , 2001, The Journal of Neuroscience.

[31]  J. Girault,et al.  Modulation of the voltage‐gated sodium current in rat striatal neurons by DARPP‐32, an inhibitor of protein phosphatase , 1998, The European journal of neuroscience.

[32]  Joel L. Davis,et al.  Adaptive Critics and the Basal Ganglia , 1995 .

[33]  D. Surmeier,et al.  Voltage-dependent facilitation of calcium channels in rat neostriatal neurons. , 1996, Journal of neurophysiology.

[34]  P. Calabresi,et al.  Cocaine and Amphetamine Depress Striatal GABAergic Synaptic Transmission through D2 Dopamine Receptors , 2002, Neuropsychopharmacology.

[35]  H. Higashi,et al.  Enhancement of dopamine actions on rat nucleus accumbens neurones in vitro after methamphetamine pre‐treatment. , 1989, The Journal of physiology.

[36]  A. Grace,et al.  Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission , 2003, Nature Neuroscience.

[37]  J. Rinzel,et al.  Compartmental model of vertebrate motoneurons for Ca2+-dependent spiking and plateau potentials under pharmacological treatment. , 1997, Journal of neurophysiology.

[38]  B. Sabatini,et al.  State-Dependent Calcium Signaling in Dendritic Spines of Striatal Medium Spiny Neurons , 2004, Neuron.

[39]  Denis Paré,et al.  NMDA-dependent facilitation of corticostriatal plasticity by the amygdala , 2007, Proceedings of the National Academy of Sciences.

[40]  F. J. White,et al.  Whole-Cell Plasticity in Cocaine Withdrawal: Reduced Sodium Currents in Nucleus Accumbens Neurons , 1998, The Journal of Neuroscience.

[41]  C. Pennartz,et al.  Dopamine D1-receptors modulate lateral inhibition between principal cells of the nucleus accumbens. , 2005, Journal of neurophysiology.

[42]  K. Sanders,et al.  Block by 4‐aminopyridine of a Kv1.2 delayed rectifier K+ current expressed in Xenopus oocytes. , 1994, The Journal of physiology.

[43]  A. Sampson,et al.  Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models , 2006, Nature Neuroscience.

[44]  Timothy H Murphy,et al.  Enhanced striatal NR2B-containing N-methyl-D-aspartate receptor-mediated synaptic currents in a mouse model of Huntington disease. , 2004, Journal of neurophysiology.

[45]  P. Calabresi,et al.  Post-receptor mechanisms underlying striatal long-term depression , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  R. Malenka,et al.  Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. , 2000, Annual review of neuroscience.

[47]  J. Bargas,et al.  Ca2+ channels that activate Ca2+-dependent K+ currents in neostriatal neurons , 1999, Neuroscience.

[48]  D. Surmeier,et al.  Somatodendritic Depolarization-Activated Potassium Currents in Rat Neostriatal Cholinergic Interneurons Are Predominantly of the A Type and Attributable to Coexpression of Kv4.2 and Kv4.1 Subunits , 1998, The Journal of Neuroscience.

[49]  G. Hjelmstad,et al.  Dopamine Excites Nucleus Accumbens Neurons through the Differential Modulation of Glutamate and GABA Release , 2004, The Journal of Neuroscience.

[50]  V. Pickel,et al.  NMDAR1 in the caudate–putamen nucleus: ultrastructural localization and co-expression with sorcin, a 22,000 mol. wt calcium binding protein , 1999, Neuroscience.

[51]  J. Vincent,et al.  Dopamine D1 receptor modulates the voltage‐gated sodium current in rat striatal neurones through a protein kinase A. , 1995, The Journal of physiology.

[52]  M. Garcia-Munoz,et al.  An afterhyperpolarization recorded in striatal cells ‘in vitro’: effect of dopamine administration , 2004, Experimental Brain Research.

[53]  B Sakmann,et al.  Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. , 1995, The Journal of physiology.

[54]  B. Sabatini,et al.  SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines , 2005, Nature Neuroscience.

[55]  C. Cepeda,et al.  Persistent Na+ conductance in medium-sized neostriatal neurons: characterization using infrared videomicroscopy and whole cell patch-clamp recordings. , 1995, Journal of neurophysiology.

[56]  E. Borrelli,et al.  Structure and function of dopamine receptors , 2000, Neuroscience & Biobehavioral Reviews.

[57]  A. Bonci,et al.  Cooperative activation of dopamine D1 and D2 receptors increases spike firing of nucleus accumbens neurons via G-protein betagamma subunits. , 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  D. Surmeier,et al.  D1 and D2 dopamine receptor modulation of sodium and potassium currents in rat neostriatal neurons. , 1993, Progress in brain research.

[59]  J. Bargas,et al.  Dopaminergic Modulation of Axon Collaterals Interconnecting Spiny Neurons of the Rat Striatum , 2003, The Journal of Neuroscience.

[60]  C. Koch,et al.  Methods in Neuronal Modeling: From Ions to Networks , 1998 .

[61]  K. Hsu,et al.  Presynaptic D2 dopaminergic receptors mediate inhibition of excitatory synaptic transmission in rat neostriatum , 1995, Brain Research.

[62]  A. Erisir,et al.  Function of specific K(+) channels in sustained high-frequency firing of fast-spiking neocortical interneurons. , 1999, Journal of neurophysiology.

[63]  C. Cepeda,et al.  Modulation of AMPA currents by D2 dopamine receptors in striatal medium‐sized spiny neurons: are dendrites necessary? , 2004, The European journal of neuroscience.

[64]  F. Fujiyama,et al.  Synaptic localization of GABAA receptor subunits in the striatum of the rat , 2000, The Journal of comparative neurology.

[65]  R. Chitwood,et al.  Activity-dependent decrease of excitability in rat hippocampal neurons through increases in Ih , 2005, Nature Neuroscience.

[66]  Akinori Akaike,et al.  Excitatory and inhibitory effects of dopamine on neuronal activity of the caudate nucleus neurons in vitro , 1987, Brain Research.

[67]  F. Gonon Prolonged and Extrasynaptic Excitatory Action of Dopamine Mediated by D1 Receptors in the Rat Striatum In Vivo , 1997, The Journal of Neuroscience.

[68]  F. J. White,et al.  Repeated cocaine treatment decreases whole-cell calcium current in rat nucleus accumbens neurons. , 2002, The Journal of pharmacology and experimental therapeutics.

[69]  B. Hyland,et al.  Firing modes of midbrain dopamine cells in the freely moving rat , 2002, Neuroscience.

[70]  S. Hestrin,et al.  Properties of GABAA Receptors Underlying Inhibitory Synaptic Currents in Neocortical Pyramidal Neurons , 1997, The Journal of Neuroscience.

[71]  L. Finkel,et al.  NMDA/AMPA Ratio Impacts State Transitions and Entrainment to Oscillations in a Computational Model of the Nucleus Accumbens Medium Spiny Projection Neuron , 2005, The Journal of Neuroscience.

[72]  B. MacVicar,et al.  Biophysical and pharmacological characterization of voltage-dependent Ca2+ channels in neurons isolated from rat nucleus accumbens. , 1998, Journal of neurophysiology.

[73]  P. Greengard,et al.  Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons , 1995, Neuron.

[74]  J. Harvey,et al.  A Postsynaptic Interaction between Dopamine D1 and NMDA Receptors Promotes Presynaptic Inhibition in the Rat Nucleus Accumbens via Adenosine Release , 1997, The Journal of Neuroscience.

[75]  V. Pickel,et al.  Ultrastructural localization of calbindin-D28k and GABA in the matrix compartment of the rat caudate-putamen nuclei , 1996, Neuroscience.

[76]  H. Higashi,et al.  Hyperpolarizing and depolarizing actions of dopamine via D-1 and D-2 receptors on nucleus accumbens neurons , 1986, Brain Research.

[77]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[78]  R Mark Wightman,et al.  Extrasynaptic dopamine and phasic neuronal activity , 2004, Nature Neuroscience.

[79]  A. D. Smith,et al.  Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: Light and electron microscopy , 1995, Neuroscience.

[80]  Charles J. Wilson,et al.  Regulation of action-potential firing in spiny neurons of the rat neostriatum in vivo. , 1998, Journal of neurophysiology.

[81]  C. Cepeda,et al.  Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances. , 1998, Journal of neurophysiology.

[82]  R. Malenka,et al.  Enhanced Inhibition of Synaptic Transmission by Dopamine in the Nucleus Accumbens during Behavioral Sensitization to Cocaine , 2002, The Journal of Neuroscience.

[83]  David G Standaert,et al.  Dopamine D1 Activation Potentiates Striatal NMDA Receptors by Tyrosine Phosphorylation-Dependent Subunit Trafficking , 2006, The Journal of Neuroscience.

[84]  L. Raymond,et al.  D1 Dopamine Receptor‐Induced Cyclic AMP‐Dependent Protein Kinase Phosphorylation and Potentiation of Striatal Glutamate Receptors , 1999, Journal of neurochemistry.

[85]  B. Bloch,et al.  Expression of the d3 dopamine receptor in peptidergic neurons of the nucleus accumbens: Comparison with the D1 and D2 dopamine receptors , 1996, Neuroscience.

[86]  S. Nicola,et al.  Contrast enhancement: a physiological effect of striatal dopamine? , 2004, Cell and Tissue Research.

[87]  P. Calabresi,et al.  Intracellular studies on the dopamine-induced firing inhibition of neostriatal neurons in vitro: Evidence for D1 receptor involvement , 1987, Neuroscience.

[88]  F. J. White,et al.  Dopamine D2 receptor-activated Ca2+ signaling modulates voltage-sensitive sodium currents in rat nucleus accumbens neurons. , 2005, Journal of neurophysiology.

[89]  Dirk Eulitz,et al.  Kir2 potassium channels in rat striatum are strategically localized to control basal ganglia function. , 2003, Brain research. Molecular brain research.

[90]  N. Castro,et al.  Direct inhibition of the N‐methyl‐D‐aspartate receptor channel by dopamine and (+)‐SKF38393 , 1999, British journal of pharmacology.

[91]  Hans Forssberg,et al.  Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons , 2000, Nature Neuroscience.

[92]  G. Obermair,et al.  The small conductance Ca2+‐activated K+ channel SK3 is localized in nerve terminals of excitatory synapses of cultured mouse hippocampal neurons , 2003, The European journal of neuroscience.

[93]  J. Lipski,et al.  Receptor subtype-specific modulation by dopamine of glutamatergic responses in striatal medium spiny neurons , 2003, Brain Research.

[94]  B. Rudy,et al.  Molecular Diversity of K+ Channels , 1999, Annals of the New York Academy of Sciences.

[95]  J. Deniau,et al.  Relationships between the Prefrontal Cortex and the Basal Ganglia in the Rat: Physiology of the Cortico-Nigral Circuits , 1999, The Journal of Neuroscience.

[96]  B. MacVicar,et al.  Multiple types of calcium channels in acutely isolated rat neostriatal neurons , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[97]  R. North,et al.  Actions of cocaine on rat nucleus accumbens neurones in vitro , 1990, British journal of pharmacology.

[98]  Yitzhak Schiller,et al.  NMDA receptor-mediated dendritic spikes and coincident signal amplification , 2001, Current Opinion in Neurobiology.

[99]  J. Bargas,et al.  Cellular and molecular characterization of Ca2+ currents in acutely isolated, adult rat neostriatal neurons , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[100]  Mark J. Thomas,et al.  Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine , 2001, Nature Neuroscience.

[101]  D. Surmeier,et al.  Coordinated Expression of Dopamine Receptors in Neostriatal Medium Spiny Neurons , 1996, The Journal of Neuroscience.

[102]  J. Wickens,et al.  Space, time and dopamine , 2007, Trends in Neurosciences.

[103]  Kuei Yuan Tseng,et al.  Cortical Slow Oscillatory Activity Is Reflected in the Membrane Potential and Spike Trains of Striatal Neurons in Rats with Chronic Nigrostriatal Lesions , 2001, The Journal of Neuroscience.

[104]  F. H. Lopes da Silva,et al.  Presynaptic dopamine D1 receptors attenuate excitatory and inhibitory limbic inputs to the shell region of the rat nucleus accumbens studied in vitro. , 1992, Journal of neurophysiology.

[105]  D. Surmeier,et al.  Dopamine receptor subtypes colocalize in rat striatonigral neurons. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[106]  Jean-Michel Deniau,et al.  Distinct Patterns of Striatal Medium Spiny Neuron Activity during the Natural Sleep–Wake Cycle , 2006, The Journal of Neuroscience.

[107]  S. Nelson,et al.  The NMDA-to-AMPA ratio at synapses onto layer 2/3 pyramidal neurons is conserved across prefrontal and visual cortices. , 2003, Journal of neurophysiology.

[108]  D. Surmeier,et al.  Kv1.2-containing K+ channels regulate subthreshold excitability of striatal medium spiny neurons. , 2004, Journal of neurophysiology.

[109]  Karel Svoboda,et al.  Plasticity of calcium channels in dendritic spines , 2003, Nature Neuroscience.

[110]  M. Yeckel,et al.  L-Type calcium channels are required for one form of hippocampal mossy fiber LTP. , 1998, Journal of neurophysiology.

[111]  James C. Houk,et al.  Information Processing in Modular Circuits Linking Basal Ganglia and Cerebral Cortex , 1994 .

[112]  Idan Segev,et al.  Compartmental models of complex neurons , 1989 .

[113]  Charles J. Wilson Dendritic morphology, inward rectification, and the functional properties of neostriatal neurons , 1992 .

[114]  G. Mogenson,et al.  Neuromodulatory action of dopamine in the nucleus accumbens: An in vivo intracellular study , 1988, Neuroscience.

[115]  P. Greengard,et al.  D(1) dopamine receptor activation reduces GABA(A) receptor currents in neostriatal neurons through a PKA/DARPP-32/PP1 signaling cascade. , 2000, Journal of neurophysiology.

[116]  D. James Surmeier,et al.  G-Protein-Coupled Receptor Modulation of Striatal CaV1.3 L-Type Ca Channels Is Dependent on a Shank-Binding Domain , 2005 .

[117]  J. Houk,et al.  Model of cortical-basal ganglionic processing: encoding the serial order of sensory events. , 1998, Journal of neurophysiology.

[118]  Hui Zhang,et al.  Heterosynaptic Dopamine Neurotransmission Selects Sets of Corticostriatal Terminals , 2004, Neuron.

[119]  Charles J. Wilson,et al.  The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[120]  K. Keefe,et al.  Evidence for functionally distinct synaptic NMDA receptors in ventromedial versus dorsolateral striatum. , 2003, Journal of neurophysiology.

[121]  Nils Ole Dalby,et al.  Activation of NMDA receptors in rat dentate gyrus granule cells by spontaneous and evoked transmitter release. , 2003, Journal of neurophysiology.

[122]  F. J. White,et al.  Dopamine D(2) receptor modulation of K(+) channel activity regulates excitability of nucleus accumbens neurons at different membrane potentials. , 2006, Journal of neurophysiology.

[123]  A. Grace,et al.  Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[124]  A. Grace,et al.  Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior , 2005, Nature Neuroscience.