Properties of repression condensates in living Ciona embryos

[1]  C. Brangwynne,et al.  Chromatin mechanics dictates subdiffusion and coarsening dynamics of embedded condensates , 2020, Nature Physics.

[2]  G. Seydoux,et al.  Author Correction: A gel phase promotes condensation of liquid P granules in Caenorhabditis elegans embryos , 2020, Nature Structural & Molecular Biology.

[3]  C. Brangwynne,et al.  The liquid nucleome – phase transitions in the nucleus at a glance , 2019, Journal of Cell Science.

[4]  R. Tjian,et al.  Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences , 2019, Genes & development.

[5]  C. Brangwynne,et al.  Nucleated transcriptional condensates amplify gene expression , 2019, Nature Cell Biology.

[6]  Christopher P. Davis,et al.  Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2 , 2019, Genes & development.

[7]  G. Seydoux,et al.  A gel phase promotes condensation of liquid P granules in C. elegans embryos , 2019, Nature Structural & Molecular Biology.

[8]  T. Mittag,et al.  Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates , 2019, Cell.

[9]  L. Christiaen,et al.  Discoidin-domain receptor coordinates cell-matrix adhesion and collective polarity in migratory cardiopharyngeal progenitors , 2019, Nature Communications.

[10]  Jared E. Toettcher,et al.  Mapping Local and Global Liquid Phase Behavior in Living Cells Using Photo-Oligomerizable Seeds , 2019, Cell.

[11]  N. Hannett,et al.  Enhancer features that drive formation of transcriptional condensates , 2018, bioRxiv.

[12]  N. Hannett,et al.  Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains , 2018, Cell.

[13]  Jared E. Toettcher,et al.  Mapping Local and Global Liquid Phase Behavior in Living Cells Using Photo-Oligomerizable Seeds , 2018, Cell.

[14]  Charles H. Li,et al.  Mediator and RNA polymerase II clusters associate in transcription-dependent condensates , 2018, Science.

[15]  Daniel S. Day,et al.  Coactivator condensation at super-enhancers links phase separation and gene control , 2018, Science.

[16]  M. Selbach,et al.  Kinase-controlled phase transition of membraneless organelles in mitosis , 2018, Nature.

[17]  Luis Kuhn Cuellar,et al.  The Eukaryotic CO2-Concentrating Organelle Is Liquid-like and Exhibits Dynamic Reorganization , 2017, Cell.

[18]  Mustafa Mir,et al.  Phase separation drives heterochromatin domain formation , 2017, Nature.

[19]  Alma L. Burlingame,et al.  Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin , 2017, Nature.

[20]  Diana M. Mitrea,et al.  Coexisting Liquid Phases Underlie Nucleolar Subcompartments , 2016, Cell.

[21]  R. Copley The Unicellular Ancestry of Groucho-Mediated Repression and the Origins of Metazoan Transcription Factors , 2016, Genome biology and evolution.

[22]  A. Hyman,et al.  Liquid-liquid phase separation in biology. , 2014, Annual review of cell and developmental biology.

[23]  Y. Satou,et al.  A time delay gene circuit is required for palp formation in the ascidian embryo , 2013, Development.

[24]  M. Fujioka,et al.  The Drosophila eve Insulator Homie Promotes eve Expression and Protects the Adjacent Gene from Repression by Polycomb Spreading , 2013, PLoS genetics.

[25]  Robert E. Kingston,et al.  Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. , 2013, Molecular cell.

[26]  M. Levine,et al.  FGF signaling establishes the anterior border of the Ciona neural tube , 2012, Development.

[27]  Jing Liang,et al.  Corepressor Protein CDYL Functions as a Molecular Bridge between Polycomb Repressor Complex 2 and Repressive Chromatin Mark Trimethylated Histone Lysine 27* , 2011, The Journal of Biological Chemistry.

[28]  A. Hyman,et al.  Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes , 2011, Proceedings of the National Academy of Sciences.

[29]  E. Munro,et al.  Sequential Activation of Apical and Basolateral Contractility Drives Ascidian Endoderm Invagination , 2010, Current Biology.

[30]  I. Dubchak,et al.  A cis-Regulatory Signature in Ascidians and Flies, Independent of Transcription Factor Binding Sites , 2010, Current Biology.

[31]  P. Lemaire Unfolding a chordate developmental program, one cell at a time: invariant cell lineages, short-range inductions and evolutionary plasticity in ascidians. , 2009, Developmental biology.

[32]  F. Boisvert,et al.  The multifunctional nucleolus , 2007, Nature Reviews Molecular Cell Biology.

[33]  Ryoichiro Kageyama,et al.  The Hes gene family: repressors and oscillators that orchestrate embryogenesis , 2007, Development.

[34]  L. Pearl,et al.  Molecular recognition of transcriptional repressor motifs by the WD domain of the Groucho/TLE corepressor. , 2006, Molecular cell.

[35]  Michael Levine,et al.  Regulatory Blueprint for a Chordate Embryo , 2006, Science.

[36]  Zoran Obradovic,et al.  Length-dependent prediction of protein intrinsic disorder , 2006, BMC Bioinformatics.

[37]  N. Satoh,et al.  Molecular Cytogenetic Characterization of Ciona intestinalis Chromosomes , 2005, Zoological science.

[38]  A. West,et al.  Insulators: many functions, many mechanisms. , 2002, Genes & development.

[39]  Andrew J. Bannister,et al.  Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain , 2001, Nature.

[40]  Karl Mechtler,et al.  Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins , 2001, Nature.

[41]  J. Fernández,et al.  A functional interaction between the histone deacetylase Rpd3 and the corepressor groucho in Drosophila development. , 1999, Genes & development.

[42]  M. Levine,et al.  hairy mediates dominant repression in the Drosophila embryo , 1997, The EMBO journal.

[43]  Alfred L. Fisher,et al.  The WRPW motif of the hairy-related basic helix-loop-helix repressor proteins acts as a 4-amino-acid transcription repression and protein-protein interaction domain , 1996, Molecular and cellular biology.

[44]  D. Ish-Horowicz,et al.  Point mutations in the Drosophila hairy gene demonstrate in vivo requirements for basic, helix-loop-helix, and WRPW domains , 1992, Molecular and cellular biology.

[45]  A. Courey,et al.  Groucho: a corepressor with instructive roles in development. , 2012, Current topics in developmental biology.

[46]  R. Ochs,et al.  Fibrillarin: a new protein of the nucleolus identified by autoimmune sera , 1985, Biology of the cell.