Interpoint-ranking sign covariance for the test of independence

We generalize the sign covariance introduced by Bergsma & Dassios (2014) to multivariate random variables and beyond. The new interpoint-ranking sign covariance is applicable to general types of random objects as long as a meaningful similarity measure can be defined, and it is shown to be zero if and only if the two random variables are independent. The test statistic is a $U$-statistic, whose large-sample behaviour guarantees that the proposed test is consistent against general types of alternatives. Numerical experiments and data analyses demonstrate the superior empirical performance of the proposed method.

[1]  Kai Xu,et al.  Power Analysis of Projection-Pursuit Independence Tests , 2022 .

[2]  Heping Zhang,et al.  Ball Covariance: A Generic Measure of Dependence in Banach Space , 2019, Journal of the American Statistical Association.

[3]  A. P. Masucci,et al.  Random planar graphs and the London street network , 2009, 0903.5440.

[4]  Carey E. Priebe,et al.  From Distance Correlation to Multiscale Graph Correlation , 2017, Journal of the American Statistical Association.

[5]  N. Mantel The detection of disease clustering and a generalized regression approach. , 1967, Cancer research.

[6]  R. Tibshirani,et al.  Prediction by Supervised Principal Components , 2006 .

[7]  Geert Molenberghs,et al.  European Surveillance of Antimicrobial Consumption (ESAC): outpatient quinolone use in Europe (1997-2009). , 2011, The Journal of antimicrobial chemotherapy.

[8]  Raymond K. W. Wong,et al.  Partially Linear Functional Additive Models for Multivariate Functional Data , 2018, Journal of the American Statistical Association.

[9]  Maria L. Rizzo,et al.  Measuring and testing dependence by correlation of distances , 2007, 0803.4101.

[10]  Wicher P. Bergsma,et al.  A study of the power and robustness of a new test for independence against contiguous alternatives , 2016 .

[11]  N. Meinshausen,et al.  Symmetric rank covariances: a generalized framework for nonparametric measures of dependence , 2017, Biometrika.

[12]  L. Wasserman,et al.  Robust multivariate nonparametric tests via projection averaging , 2018 .

[13]  Anil K. Ghosh,et al.  On some exact distribution-free tests of independence between two random vectors of arbitrary dimensions , 2016 .

[14]  Hans-Georg Müller,et al.  Quantifying Infinite-Dimensional Data: Functional Data Analysis in Action , 2017 .

[15]  R. Heller,et al.  A consistent multivariate test of association based on ranks of distances , 2012, 1201.3522.

[16]  J. Friedman,et al.  Graph-Theoretic Measures of Multivariate Association and Prediction , 1983 .

[17]  C. Spearman The proof and measurement of association between two things. , 2015, International journal of epidemiology.

[18]  M. Drton,et al.  Distribution-Free Consistent Independence Tests via Center-Outward Ranks and Signs , 2019, Journal of the American Statistical Association.

[19]  Bodhisattva Sen,et al.  Multivariate Rank-Based Distribution-Free Nonparametric Testing Using Measure Transportation , 2019, Journal of the American Statistical Association.

[20]  R. Modarres,et al.  Nonparametric tests of independence based on interpoint distances , 2020 .

[21]  W. Hoeffding A Non-Parametric Test of Independence , 1948 .

[22]  Yu Zheng,et al.  Trajectory Data Mining , 2015, ACM Trans. Intell. Syst. Technol..

[23]  Ing Rj Ser Approximation Theorems of Mathematical Statistics , 1980 .

[25]  R. Tibshirani,et al.  Semi-Supervised Methods to Predict Patient Survival from Gene Expression Data , 2004, PLoS biology.

[26]  J. Nash The imbedding problem for Riemannian manifolds , 1956 .

[27]  Ruth Heller,et al.  Multivariate tests of association based on univariate tests , 2016, NIPS.

[28]  S. L. Free,et al.  Landmark-Based Morphometrics of the Normal Adult Brain Using MRI , 2001, NeuroImage.

[29]  Anil K. Ghosh,et al.  Some Multivariate Tests of Independence Based on Ranks of Nearest Neighbors , 2018, Technometrics.

[30]  J. Kiefer,et al.  DISTRIBUTION FREE TESTS OF INDEPENDENCE BASED ON THE SAMPLE DISTRIBUTION FUNCTION , 1961 .

[31]  Arnoldo Frigessi,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm305 Gene expression Predicting survival from microarray data—a comparative study , 2022 .

[32]  Gábor J. Székely,et al.  The distance correlation t-test of independence in high dimension , 2013, J. Multivar. Anal..

[33]  C. Spearman The proof and measurement of association between two things. By C. Spearman, 1904. , 1987, The American journal of psychology.

[34]  Herman Goossens,et al.  European Surveillance of Antimicrobial Consumption (ESAC): outpatient quinolone use in Europe. , 2006, The Journal of antimicrobial chemotherapy.

[35]  John R. Williams,et al.  The EPIC crop growth model , 1989 .

[36]  Thomas B. Berrett,et al.  Nonparametric independence testing via mutual information , 2017, Biometrika.

[37]  K. Pearson VII. Note on regression and inheritance in the case of two parents , 1895, Proceedings of the Royal Society of London.

[38]  M. Drton,et al.  High dimensional independence testing with maxima of rank correlations , 2018 .

[39]  Kenji Fukumizu,et al.  Equivalence of distance-based and RKHS-based statistics in hypothesis testing , 2012, ArXiv.

[40]  Runze Li,et al.  Projection correlation between two random vectors , 2017, Biometrika.

[41]  L. Staudt,et al.  The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. , 2002, The New England journal of medicine.

[42]  Mathias Drton,et al.  Testing mutual independence in high dimensions with sums of squares of rank correlations , 2015, 1501.01732.

[43]  Luca Weihs,et al.  Large-Sample Theory for the Bergsma-Dassios Sign Covariance , 2016, 1602.04387.

[44]  Hans-Georg Muller,et al.  Principal component analysis for functional data on Riemannian manifolds and spheres , 2017, The Annals of Statistics.

[45]  Ioannis Kontoyiannis,et al.  Optimal rates for independence testing via U-statistic permutation tests , 2020, The Annals of Statistics.

[46]  Le Song,et al.  A Kernel Statistical Test of Independence , 2007, NIPS.

[47]  Jane-Ling Wang,et al.  Stringing High-Dimensional Data for Functional Analysis , 2011 .

[48]  R. Lyons Distance covariance in metric spaces , 2011, 1106.5758.

[49]  C. Kuratowski Quelques problèmes concernant les espaces métriques non-séparables , 1935 .

[50]  R. Heller,et al.  Computing the Bergsma Dassios sign-covariance , 2016, 1605.08732.

[51]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .

[52]  Wicher P. Bergsma,et al.  A consistent test of independence based on a sign covariance related to Kendall's tau , 2010, 1007.4259.

[53]  Xiaofeng Shao,et al.  Distance-based and RKHS-based dependence metrics in high dimension , 2019, 1902.03291.

[54]  Bernhard Schölkopf,et al.  Measuring Statistical Dependence with Hilbert-Schmidt Norms , 2005, ALT.

[55]  Ann. Probab Distance Covariance in Metric Spaces , 2017 .

[56]  Chaim Even-Zohar,et al.  Counting Small Permutation Patterns , 2019, SODA.