The importance of probability interference in social science: rationale and experiment

Probability interference is a fundamental characteristic of quantum mechanics. In this paper we attempt to show with the help of some examples, where this fundamental trait of quantum physics can be found back in a social science environment. In order to support our thesis that interference can possibly be found back in many other macro-scopic areas, we proceed in setting up an experimental test.

[1]  P. Suppes The Measurement of Belief , 1974 .

[2]  Andrei Khrennikov,et al.  On the cognitive experiments to test quantum-like behaviour of mind , 2002 .

[3]  Y. Kabanov,et al.  Remarks on the true No-arbitrage Property , 2005 .

[4]  A. Tversky,et al.  Unpacking, repacking, and anchoring: advances in support theory. , 1997 .

[5]  G. Booth,et al.  The Effect of Melodic Activity, Tempo Change, and Audible Beat on Tempo Perception of Elementary School Students , 1988 .

[6]  Andrei Khrennikov Classical and quantum mechanics on information spaces with applications to cognitive, psychological, social and anomalous phenomena , 2000 .

[7]  John M. Geringer,et al.  The Effect of Speed Alterations on Tempo Note Selection , 1986 .

[8]  Terry Lee Kuhn,et al.  Discrimination of Modulated Beat Tempo by Professional Musicians , 1974 .

[9]  A. Khrennikov Information Dynamics in Cognitive, Psychological, Social, and Anomalous Phenomena , 2004 .

[10]  F. J. Anscombe,et al.  A Definition of Subjective Probability , 1963 .

[11]  Pierfrancesco La Mura Projective expected utility: a subjective formulation , 2008, TARK '09.

[12]  A. Etheridge A course in financial calculus , 2002 .

[13]  A. Tversky,et al.  Thinking through uncertainty: Nonconsequential reasoning and choice , 1992, Cognitive Psychology.

[14]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[15]  A. Tversky,et al.  Options traders exhibit subadditive decision weights , 1996 .

[16]  O. Choustova Toward quantum-like modeling of financial processes , 2007 .

[17]  Massimo Marinacci,et al.  Differentiating ambiguity and ambiguity attitude , 2004, J. Econ. Theory.

[18]  D. Duffie Dynamic Asset Pricing Theory , 1992 .

[19]  A. Cordero Understanding Quantum Physics , 2003 .

[20]  Emmanuel Haven,et al.  Does Probability Interference Exist In Social Science , 2007 .

[21]  P. Cook,et al.  Memory for musical tempo: Additional evidence that auditory memory is absolute , 1996, Perception & psychophysics.

[22]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[23]  Emmanuel Haven,et al.  Private Information and the ‘Information Function’: A Survey of Possible Uses , 2008 .

[24]  Zheng Wang,et al.  Quantum Information Processing Explanation for Interactions between Inferences and Decisions , 2007, AAAI Spring Symposium: Quantum Interaction.

[25]  Elio Conte,et al.  A Preliminar Evidence of Quantum Like Behavior in Measurements of Mental States , 2003 .

[26]  E. Haven The Variation of Financial Arbitrage via the Use of an Information Wave Function , 2008 .

[27]  A. Tversky,et al.  Support theory: A nonextensional representation of subjective probability. , 1994 .

[28]  David M. Kreps Notes On The Theory Of Choice , 1988 .

[29]  G. L. Collier,et al.  An Exploration of the Use of Tempo in Jazz , 1994 .

[30]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[31]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[32]  J. Goldstein 13 – THE SOCIAL PSYCHOLOGY OF … , 1980 .

[33]  Andrei Khrennivov,et al.  Classical and Quantum Mechanics on Information Spaces with Applications to Cognitive, Psychological, Social, and Anomalous Phenomena , 1999, quant-ph/0003016.

[34]  B. Hiley The Undivided Universe , 1993 .

[35]  Classical and quantum randomness and the financial market , 2007, 0704.2865.

[36]  C. Drake,et al.  Tempo sensitivity in auditory sequences: Evidence for a multiple-look model , 1993, Perception & psychophysics.

[37]  Rita S. Salzberg,et al.  Discrimination of Modulated Music Tempo by String Students , 1984 .

[38]  H. Levitt Transformed up-down methods in psychoacoustics. , 1971, The Journal of the Acoustical Society of America.

[39]  Emmanuel Haven Pilot-Wave Theory and Financial Option Pricing , 2005 .

[40]  T. Kuhn,et al.  Effect of Notational Values, Age, and Example Length on Tempo Performance Accuracy , 1975 .

[41]  Alan H. Drake,et al.  An Experimental Study of Selected Variables in the Performance of Musical Durational Notation , 1968 .

[42]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[43]  Riccardo Franco Quantum mechanics and rational ignorance , 2007 .

[44]  John M. Geringer,et al.  Pitch and Tempo Discrimination in Recorded Orchestral Music among Musicians and Nonmusicians , 1984 .

[45]  James T. Townsend,et al.  Quantum dynamics of human decision-making , 2006 .

[46]  P. Farnsworth The social psychology of music, 2nd ed. , 1969 .

[47]  Olga Al. Choustova Quantum Bohmian model for financial market , 2001 .

[48]  Didier Dubois,et al.  Modelling uncertainty and inductive inference: A survey of recent non-additive probability systems , 1988 .

[49]  P. Holland,et al.  The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics , 1993 .

[50]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[51]  F. Attneave,et al.  Pitch as a medium: a new approach to psychophysical scaling. , 1971, The American journal of psychology.

[52]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[53]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.