Botulinum neurotoxin: a marvel of protein design.

Botulinum neurotoxin (BoNT), the causative agent of botulism, is acknowledged to be the most poisonous protein known. BoNT proteases disable synaptic vesicle exocytosis by cleaving their cytosolic SNARE (soluble NSF attachment protein receptor) substrates. BoNT is a modular nanomachine: an N-terminal Zn(2+)-metalloprotease, which cleaves the SNAREs; a central helical protein-conducting channel, which chaperones the protease across endosomes; and a C-terminal receptor-binding module, consisting of two subdomains that determine target specificity by binding to a ganglioside and a protein receptor on the cell surface and triggering endocytosis. For BoNT, functional complexity emerges from its modular design and the tight interplay between its component modules--a partnership with consequences that surpass the simple sum of the individual component's action. BoNTs exploit this design at each step of the intoxication process, thereby achieving an exquisite toxicity. This review summarizes current knowledge on the structure of individual modules and presents mechanistic insights into how this protein machine evolved to this level of sophistication. Understanding the design principles underpinning the function of such a dynamic modular protein remains a challenging task.

[1]  H. Bigalke,et al.  Synaptotagmins I and II Act as Nerve Cell Receptors for Botulinum Neurotoxin G* , 2004, Journal of Biological Chemistry.

[2]  S. Swaminathan,et al.  Crystallographic evidence for doxorubicin binding to the receptor-binding site in Clostridium botulinum neurotoxin B. , 2001, Acta crystallographica. Section D, Biological crystallography.

[3]  T. Tsuji,et al.  Identification of the receptor-binding sites in the carboxyl-terminal half of the heavy chain of botulinum neurotoxin types C and D. , 2008, Microbial pathogenesis.

[4]  HERBERT A. SIMON,et al.  The Architecture of Complexity , 1991 .

[5]  A T Brünger,et al.  Structural Changes Are Associated with Soluble N-Ethylmaleimide-sensitive Fusion Protein Attachment Protein Receptor Complex Formation* , 1997, The Journal of Biological Chemistry.

[6]  J. Vederas,et al.  Drug Discovery and Natural Products: End of an Era or an Endless Frontier? , 2009, Science.

[7]  H. Yanai,et al.  Inhibitor‐assisted refolding of protease: A protease inhibitor as an intramolecular chaperone , 2005, FEBS letters.

[8]  M. Bodeker,et al.  Novel Chimeras of Botulinum Neurotoxins A and E Unveil Contributions from the Binding, Translocation, and Protease Domains to Their Functional Characteristics* , 2008, Journal of Biological Chemistry.

[9]  R. Stevens,et al.  Crystal structure of botulinum neurotoxin type A and implications for toxicity , 1998, Nature Structural Biology.

[10]  S. Ovsepian,et al.  Activation of TRPV1 Mediates Calcitonin Gene-Related Peptide Release, Which Excites Trigeminal Sensory Neurons and Is Attenuated by a Retargeted Botulinum Toxin with Anti-Nociceptive Potential , 2009, The Journal of Neuroscience.

[11]  Leonard A. Smith,et al.  Enzymatic Autocatalysis of Botulinum A Neurotoxin Light Chain , 2001, Journal of protein chemistry.

[12]  A. Dickenson,et al.  Retargeted clostridial endopeptidases: Inhibition of nociceptive neurotransmitter release in vitro, and antinociceptive activity in in vivo models of pain , 2002, Movement disorders : official journal of the Movement Disorder Society.

[13]  A. Finkelstein Channels formed in phospholipid bilayer membranes by diphtheria, tetanus, botulinum and anthrax toxin. , 1990, Journal de physiologie.

[14]  K. Janda,et al.  Light chain of botulinum neurotoxin serotype A: structural resolution of a catalytic intermediate. , 2006, Biochemistry.

[15]  Junying Yuan,et al.  The PHD Finger of the Chromatin-Associated Protein ING2 Functions as a Nuclear Phosphoinositide Receptor , 2003, Cell.

[16]  K. Bostian,et al.  Proteolysis of synthetic peptides by type A botulinum neurotoxin , 1995, Journal of protein chemistry.

[17]  Giampietro Schiavo,et al.  SNARE motif and neurotoxins , 1994, Nature.

[18]  A. Brunger,et al.  A potent peptidomimetic inhibitor of botulinum neurotoxin serotype A has a very different conformation than SNAP-25 substrate. , 2008, Structure.

[19]  Axel T. Brunger,et al.  Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity , 2006, Nature.

[20]  M. Rapport,et al.  THE BINDING OF BOTULINUM TOXIN TO MEMBRANE LIPIDS: SPHINGOLIPIDS, STEROIDS AND FATTY ACIDS , 1971, Journal of neurochemistry.

[21]  J. Ren,et al.  Interaction of diphtheria toxin T domain with molten globule-like proteins and its implications for translocation. , 1999, Science.

[22]  R. Stevens,et al.  Sequence homology and structural analysis of the clostridial neurotoxins. , 1999, Journal of molecular biology.

[23]  B. Davletov,et al.  The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves , 2006, FEBS letters.

[24]  L. Simpson Botulinum toxin and tetanus toxin recognize similar membrane determinants , 1984, Brain Research.

[25]  M. Montal,et al.  Crucial Role of the Disulfide Bridge between Botulinum Neurotoxin Light and Heavy Chains in Protease Translocation across Membranes* , 2007, Journal of Biological Chemistry.

[26]  J. Alves,et al.  Arg(362) and Tyr(365) of the botulinum neurotoxin type a light chain are involved in transition state stabilization. , 2002, Biochemistry.

[27]  A. E. Rossi,et al.  RyR1 S-Nitrosylation Underlies Environmental Heat Stroke and Sudden Death in Y522S RyR1 Knockin Mice , 2008, Cell.

[28]  L. Simpson,et al.  Inhibition of vacuolar adenosine triphosphatase antagonizes the effects of clostridial neurotoxins but not phospholipase A2 neurotoxins. , 1994, The Journal of pharmacology and experimental therapeutics.

[29]  A. T. Brunger,et al.  Identification of a minimal core of the synaptic SNARE complex sufficient for reversible assembly and disassembly. , 1998, Biochemistry.

[30]  M. Montal,et al.  Assembly of a Ternary Complex by the Predicted Minimal Coiled-coil-forming Domains of Syntaxin, SNAP-25, and Synaptobrevin , 1998, The Journal of Biological Chemistry.

[31]  K. Takeuchi,et al.  Binding of Clostridium botulinum Type C and D Neurotoxins to Ganglioside and Phospholipid , 2005, Journal of Biological Chemistry.

[32]  K. Aktories,et al.  Cellular uptake of Clostridium botulinum C2 toxin: membrane translocation of a fusion toxin requires unfolding of its dihydrofolate reductase domain. , 2003, Biochemistry.

[33]  T. Südhof,et al.  Complexin Controls the Force Transfer from SNARE Complexes to Membranes in Fusion , 2009, Science.

[34]  R. Stevens,et al.  Crystal Structure of Botulinum Neurotoxin Type A in Complex with the Cell Surface Co-Receptor GT1b—Insight into the Toxin–Neuron Interaction , 2008, PLoS pathogens.

[35]  E. Neale,et al.  The Role of the Synaptic Protein SNAP-25 in the Potency of Botulinum Neurotoxin Type A* , 2001, The Journal of Biological Chemistry.

[36]  T. Südhof,et al.  Membrane Fusion: Grappling with SNARE and SM Proteins , 2009, Science.

[37]  J. Dolly,et al.  Two Protein Trafficking Processes at Motor Nerve Endings Unveiled by Botulinum Neurotoxin E , 2007, Journal of Pharmacology and Experimental Therapeutics.

[38]  R. Stevens,et al.  Molecular evolution of antibody cross-reactivity for two subtypes of type A botulinum neurotoxin , 2007, Nature Biotechnology.

[39]  Chao Zhang,et al.  The unfolded protein response signals through high-order assembly of Ire1 , 2009, Nature.

[40]  S. Tosatto,et al.  The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane. , 2009, Biochemical and biophysical research communications.

[41]  Silvio C. E. Tosatto,et al.  Electric dipole reorientation in the interaction of botulinum neurotoxins with neuronal membranes , 2009, FEBS letters.

[42]  D. Boger,et al.  An in vitro and in vivo disconnect uncovered through high-throughput identification of botulinum neurotoxin A antagonists , 2007, Proceedings of the National Academy of Sciences.

[43]  A. Brunger,et al.  Structural and biochemical studies of botulinum neurotoxin serotype C1 light chain protease: implications for dual substrate specificity. , 2007, Biochemistry.

[44]  James J. Schmidt,et al.  Botulinum neurotoxin serotype F: identification of substrate recognition requirements and development of inhibitors with low nanomolar affinity. , 2005, Biochemistry.

[45]  M. McComb,et al.  The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex , 2003, Journal of Cell Biology.

[46]  G. Schiavo,et al.  Effect of pH on the interaction of botulinum neurotoxins A, B and E with liposomes. , 1989, The Biochemical journal.

[47]  S. Swaminathan,et al.  Structural analysis of botulinum neurotoxin type E catalytic domain and its mutant Glu212-->Gln reveals the pivotal role of the Glu212 carboxylate in the catalytic pathway. , 2004, Biochemistry.

[48]  B. Rupp,et al.  Crystal structure of Clostridium botulinum neurotoxin protease in a product-bound state: Evidence for noncanonical zinc protease activity. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[49]  L. Simpson Kinetic studies on the interaction between botulinum toxin type A and the cholinergic neuromuscular junction. , 1980, The Journal of pharmacology and experimental therapeutics.

[50]  L. Simpson,et al.  Identification of the major steps in botulinum toxin action. , 2004, Annual review of pharmacology and toxicology.

[51]  C. Schengrund,et al.  Botulinum Neurotoxin A Activity Is Dependent upon the Presence of Specific Gangliosides in Neuroblastoma Cells Expressing Synaptotagmin I* , 2002, The Journal of Biological Chemistry.

[52]  J. Marks,et al.  Molecular Architecture of Botulinum Neurotoxin E Revealed by Single Particle Electron Microscopy* , 2008, Journal of Biological Chemistry.

[53]  Kalle Gehring,et al.  Concerted multi-pronged attack by calpastatin to occlude the catalytic cleft of heterodimeric calpains , 2008, Nature.

[54]  Richa Rawat,et al.  Substrate Binding Mode and Its Implication on Drug Design for Botulinum Neurotoxin A , 2008, PLoS pathogens.

[55]  M. Montal,et al.  Translocation of botulinum neurotoxin light chain protease through the heavy chain channel , 2003, Nature Structural Biology.

[56]  Yu-liangSHI,et al.  Cure of experimental botulism and antibotulismic effect of toosendanin , 2004 .

[57]  E. Yavin,et al.  Tetanus toxin receptors on nerve cells contain a trypsin-sensitive component. , 1986, European journal of biochemistry.

[58]  A. Omori,et al.  Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. , 1994, The Journal of biological chemistry.

[59]  R. Stevens,et al.  Structural basis of cell surface receptor recognition by botulinum neurotoxin B , 2006, Nature.

[60]  U. Weller,et al.  Cooperative action of the light chain of tetanus toxin and the heavy chain of botulinum toxin type A on the transmitter release of mammalian motor endplates , 1991, Neuroscience Letters.

[61]  R. Stevens,et al.  Crystal structure of botulinum neurotoxin type G light chain: serotype divergence in substrate recognition. , 2005, Biochemistry.

[62]  J. Rothman,et al.  Alternative Zippering as an On-Off Switch for SNARE-Mediated Fusion , 2009, Science.

[63]  J. Barbieri,et al.  Substrate Recognition of VAMP-2 by Botulinum Neurotoxin B and Tetanus Neurotoxin* , 2008, Journal of Biological Chemistry.

[64]  J. Barbieri,et al.  Glycosylated SV2 and gangliosides as dual receptors for botulinum neurotoxin serotype F. , 2009, Biochemistry.

[65]  A. Brunger,et al.  Single-molecule studies of the neuronal SNARE fusion machinery. , 2009, Annual review of biochemistry.

[66]  Axel T Brunger,et al.  Structure and function of SNARE and SNARE-interacting proteins , 2005, Quarterly Reviews of Biophysics.

[67]  Helmut Grubmüller,et al.  Molecular Anatomy of a Trafficking Organelle , 2006, Cell.

[68]  E. Seto,et al.  Lysine acetylation: codified crosstalk with other posttranslational modifications. , 2008, Molecular cell.

[69]  R. Campbell,et al.  Calcium-bound structure of calpain and its mechanism of inhibition by calpastatin , 2008, Nature.

[70]  H. E. Marshall,et al.  Protein S-nitrosylation: purview and parameters , 2005, Nature Reviews Molecular Cell Biology.

[71]  Axel T. Brunger,et al.  Substrate recognition strategy for botulinum neurotoxin serotype A , 2004, Nature.

[72]  L. Simpson Ammonium chloride and methylamine hydrochloride antagonize clostridial neurotoxins. , 1983, The Journal of pharmacology and experimental therapeutics.

[73]  E. Neher,et al.  Exocytotic mechanism studied by truncated and zero layer mutants of the C‐terminus of SNAP‐25 , 2000, The EMBO journal.

[74]  Kazuki Sato,et al.  The high‐affinity binding of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides GT1b/GD1a , 1996, FEBS letters.

[75]  C. Montecucco,et al.  Comparison of the pH-induced conformational change of different clostridial neurotoxins. , 2004, Biochemical and biophysical research communications.

[76]  S. Clarke,et al.  Protein arginine methylation in mammals: who, what, and why. , 2009, Molecular cell.

[77]  A. Ferrer-Montiel,et al.  Tyrosine Phosphorylation Modulates the Activity of Clostridial Neurotoxins* , 1996, The Journal of Biological Chemistry.

[78]  G. Schiavo,et al.  Functional characterisation of tetanus and botulinum neurotoxins binding domains. , 1999, Journal of cell science.

[79]  D. Lacy,et al.  Botulinum Neurotoxin Devoid of Receptor Binding Domain Translocates Active Protease , 2008, PLoS pathogens.

[80]  B. Davletov,et al.  Munc18-1 is critical for plasma membrane localization of syntaxin1 but not of SNAP-25 in PC12 cells. , 2007, Molecular biology of the cell.

[81]  Thomas C. Südhof,et al.  Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25 , 1993, Nature.

[82]  F. Benfenati,et al.  Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin , 1992, Nature.

[83]  S. Kozaki,et al.  Differential contribution of the residues in C-terminal half of the heavy chain of botulinum neurotoxin type B to its binding to the ganglioside GT1b and the synaptotagmin 2/GT1b complex. , 2007, Microbial pathogenesis.

[84]  S. Swaminathan,et al.  Structural analysis of botulinum neurotoxin serotype F light chain: implications on substrate binding and inhibitor design. , 2005, Biochemistry.

[85]  Leonard A. Smith,et al.  Evaluation of the Therapeutic Usefulness of Botulinum Neurotoxin B, C1, E, and F Compared with the Long Lasting Type A , 2003, The Journal of Biological Chemistry.

[86]  A. Brunger,et al.  Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[87]  T. Binz,et al.  Cell entry strategy of clostridial neurotoxins , 2009, Journal of neurochemistry.

[88]  R. Stevens,et al.  Structure of botulinum neurotoxin type D light chain at 1.65 A resolution: repercussions for VAMP-2 substrate specificity. , 2006, Biochemistry.

[89]  A. Chenal,et al.  Membrane Interaction of Botulinum Neurotoxin A Translocation (T) Domain , 2008, Journal of Biological Chemistry.

[90]  S. Swaminathan,et al.  Structural analysis of the catalytic domain of tetanus neurotoxin. , 2005, Toxicon : official journal of the International Society on Toxinology.

[91]  M. Inouye,et al.  A Pathway for Conformational Diversity in Proteins Mediated by Intramolecular Chaperones* , 1999, The Journal of Biological Chemistry.

[92]  J. Dolly,et al.  Differences in the protease activities of tetanus and botulinum B toxins revealed by the cleavage of vesicle-associated membrane protein and various sized fragments. , 1994, Biochemistry.

[93]  W. Tepp,et al.  Status of Cys Residues in the Covalent Structure of Botulinum Neurotoxin Types A, B, and E , 1998, Journal of protein chemistry.

[94]  R. Benz,et al.  Clostridium botulinum C2 Toxin , 2003, Journal of Biological Chemistry.

[95]  T. Nishiki,et al.  Ganglioside GT1b as a complementary receptor component for Clostridium botulinum neurotoxins. , 1998, Microbial pathogenesis.

[96]  M. Sekiguchi,et al.  Binding of botulinum type B neurotoxin to Chinese hamster ovary cells transfected with rat synaptotagmin II cDNA , 1996, Neuroscience Letters.

[97]  Philip K. Russell,et al.  Botulinum toxin as a biological weapon: medical and public health management. , 2001, JAMA.

[98]  V. Sathyamoorthy,et al.  Separation, purification, partial characterization and comparison of the heavy and light chains of botulinum neurotoxin types A, B, and E. , 1985, The Journal of biological chemistry.

[99]  Alfred G Tamayo,et al.  COPI coatomer complex proteins facilitate the translocation of anthrax lethal factor across vesicular membranes in vitro , 2008, Proceedings of the National Academy of Sciences.

[100]  M. Simon,et al.  Insertion of diphtheria toxin into and across membranes: role of phosphoinositide asymmetry , 1982, Nature.

[101]  R. K. Gordon,et al.  TCEP treatment reduces proteolytic activity of BoNT/B in human neuronal SHSY‐5Y cells , 2009, Journal of cellular biochemistry.

[102]  C. Montecucco How do tetanus and botulinum toxins bind to neuronal membranes , 1986 .

[103]  J. Keller,et al.  Uptake of botulinum neurotoxin into cultured neurons. , 2004, Biochemistry.

[104]  L. Li,et al.  Spectroscopic analysis of pH-induced changes in the molecular features of type A botulinum neurotoxin light chain. , 2000, Biochemistry.

[105]  Raymond C Stevens,et al.  Retraction: Cocrystal structure of synaptobrevin-II bound to botulinum neurotoxin type B at 2.0 Å resolution , 2009, Nature Structural &Molecular Biology.

[106]  J. Canaves,et al.  The 26‐mer peptide released from SNAP‐25 cleavage by botulinum neurotoxin E inhibits vesicle docking , 1998, FEBS letters.

[107]  R. Stafford,et al.  Type A botulinum neurotoxin proteolytic activity: development of competitive inhibitors and implications for substrate specificity at the S1′ binding subsite , 1998, FEBS letters.

[108]  J. Barbieri,et al.  Mechanism of Substrate Recognition by Botulinum Neurotoxin Serotype A* , 2007, Journal of Biological Chemistry.

[109]  Leonard A. Smith,et al.  Identification and Biochemical Characterization of Small-Molecule Inhibitors of Clostridium botulinum Neurotoxin Serotype A , 2009, Antimicrobial Agents and Chemotherapy.

[110]  B. Davletov,et al.  A molecular basis underlying differences in the toxicity of botulinum serotypes A and E , 2004, EMBO reports.

[111]  J. Barbieri,et al.  Multiple Pocket Recognition of SNAP25 by Botulinum Neurotoxin Serotype E* , 2007, Journal of Biological Chemistry.

[112]  Eric A. Johnson,et al.  Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells , 2003, The Journal of cell biology.

[113]  H. Dyson,et al.  Intrinsically unstructured proteins and their functions , 2005, Nature Reviews Molecular Cell Biology.

[114]  M. Montal,et al.  Characterization ofClostridial botulinum neurotoxin channels in neuroblastoma cells , 2006, Neurotoxicity Research.

[115]  R. Collier,et al.  Protein translocation through the anthrax toxin transmembrane pore is driven by a proton gradient. , 2006, Journal of molecular biology.

[116]  Kim D Janda,et al.  Structures of Clostridium botulinum Neurotoxin Serotype A Light Chain complexed with small-molecule inhibitors highlight active-site flexibility. , 2007, Chemistry & biology.

[117]  K. Janda,et al.  Bimodal modulation of the botulinum neurotoxin protein-conducting channel , 2009, Proceedings of the National Academy of Sciences.

[118]  Richard I. Morimoto,et al.  Adapting Proteostasis for Disease Intervention , 2008, Science.

[119]  J. Barbieri,et al.  Engineering botulinum neurotoxin to extend therapeutic intervention , 2009, Proceedings of the National Academy of Sciences.

[120]  Tobin J Dickerson,et al.  The use of small molecules to investigate molecular mechanisms and therapeutic targets for treatment of botulinum neurotoxin A intoxication. , 2006, ACS chemical biology.

[121]  Leonard A. Smith,et al.  N-terminal helix reorients in recombinant C-fragment of Clostridium botulinum type B. , 2005, Biochemical and biophysical research communications.

[122]  A. Brünger,et al.  A Structural Change Occurs upon Binding of Syntaxin to SNAP-25* , 1997, The Journal of Biological Chemistry.

[123]  T. Weil,et al.  Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept , 2007, Proceedings of the National Academy of Sciences.

[124]  C. Montecucco,et al.  Presynaptic neurotoxins with enzymatic activities. , 2008, Handbook of experimental pharmacology.

[125]  Benedikt Westermann,et al.  SNAREpins: Minimal Machinery for Membrane Fusion , 1998, Cell.

[126]  G. Ahnert-Hilger,et al.  Botulinum neurotoxin type D enables cytosolic delivery of enzymatically active cargo proteins to neurones via unfolded translocation intermediates , 2004, Journal of neurochemistry.

[127]  Harald Stenmark,et al.  The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins , 2009, Nature.

[128]  T. Südhof,et al.  Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. , 1994, The EMBO journal.

[129]  L. O. Ticknor,et al.  Genetic Diversity among Botulinum Neurotoxin-Producing Clostridial Strains , 2006, Journal of bacteriology.

[130]  M. Montal,et al.  Single molecule detection of intermediates during botulinum neurotoxin translocation across membranes , 2007, Proceedings of the National Academy of Sciences.

[131]  S. Swaminathan,et al.  Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B , 2000, Nature Structural Biology.

[132]  S. Swaminathan,et al.  Mode of VAMP substrate recognition and inhibition of Clostridium botulinum neurotoxin F , 2009, Nature Structural &Molecular Biology.

[133]  C. Quinn,et al.  Inhibition of Vesicular Secretion in Both Neuronal and Nonneuronal Cells by a Retargeted Endopeptidase Derivative ofClostridium botulinum Neurotoxin Type A , 2000, Infection and Immunity.

[134]  Dirk Tiemann,et al.  The Host Cell Chaperone Hsp90 Is Essential for Translocation of the Binary Clostridium botulinum C2 Toxin into the Cytosol* , 2003, Journal of Biological Chemistry.

[135]  Karen N. Allen,et al.  Catalytic features of the botulinum neurotoxin A light chain revealed by high resolution structure of an inhibitory peptide complex. , 2008, Biochemistry.

[136]  R. S. Williams,et al.  Botulinum neurotoxin type B. Its purification, radioiodination and interaction with rat-brain synaptosomal membranes. , 1986, European journal of biochemistry.

[137]  Eric A. Johnson,et al.  SV2 Is the Protein Receptor for Botulinum Neurotoxin A , 2006, Science.

[138]  Marcus Mueller,et al.  The structure of a cytolytic α-helical toxin pore reveals its assembly mechanism , 2009, Nature.

[139]  Edwin R Chapman,et al.  How does synaptotagmin trigger neurotransmitter release? , 2008, Annual review of biochemistry.

[140]  R. Barbano BOTULINUM TOXIN: THERAPEUTIC CLINICAL PRACTICE & SCIENCE , 2010, Neurology.

[141]  S. Collins,et al.  Comprehensive Characterization of Genes Required for Protein Folding in the Endoplasmic Reticulum , 2009, Science.

[142]  Helen Ho,et al.  Plasma membrane localization signals in the light chain of botulinum neurotoxin. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[143]  Raymond C. Stevens,et al.  Cocrystal structure of synaptobrevin-II bound to botulinum neurotoxin type B at 2.0 Å resolution , 2000, Nature Structural Biology.

[144]  S. Nauenburg,et al.  Proteolysis of SNAP‐25 Isoforms by Botulinum Neurotoxin Types A, C, and E , 1999, Journal of neurochemistry.

[145]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[146]  R. Stevens,et al.  A structural perspective of the sequence variability within botulinum neurotoxin subtypes A1-A4. , 2006, Journal of molecular biology.

[147]  Colin Rickman,et al.  High Affinity Interaction of Syntaxin and SNAP-25 on the Plasma Membrane Is Abolished by Botulinum Toxin E* , 2004, Journal of Biological Chemistry.

[148]  K. Acharya,et al.  Crystal structure of a catalytically active, non-toxic endopeptidase derivative of Clostridium botulinum toxin A. , 2009, Biochemical and biophysical research communications.

[149]  H. Bigalke,et al.  The HCC‐domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction , 2003, Molecular microbiology.

[150]  Edwin R Chapman,et al.  Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. , 2008, Molecular biology of the cell.

[151]  Reinhard Jahn,et al.  Helical extension of the neuronal SNARE complex into the membrane , 2009, Nature.

[152]  P. Alexander,et al.  Catalysis of a protein folding reaction: mechanistic implications of the 2.0 A structure of the subtilisin-prodomain complex. , 1995, Biochemistry.

[153]  Axel T Brunger,et al.  2.3 A crystal structure of tetanus neurotoxin light chain. , 2005, Biochemistry.

[154]  D. Toomre,et al.  A Phosphoinositide Switch Controls the Maturation and Signaling Properties of APPL Endosomes , 2009, Cell.

[155]  L. Tauc,et al.  A role for the interchain disulfide or its participating thiols in the internalization of botulinum neurotoxin A revealed by a toxin derivative that binds to ecto-acceptors and inhibits transmitter release intracellularly. , 1993, The Journal of biological chemistry.

[156]  R. Collier,et al.  Evidence for a Proton–Protein Symport Mechanism in the Anthrax Toxin Channel , 2009, The Journal of general physiology.

[157]  Axel T Brunger,et al.  Botulinum Neurotoxin Heavy Chain Belt as an Intramolecular Chaperone for the Light Chain , 2007, PLoS pathogens.

[158]  J. Navaza,et al.  Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation. , 2008, Journal of molecular biology.