Assessing the influence of marketing activities on customer behaviors: a dynamic clustering approach

This research presents an application of a mixed hidden Markov model to data from a multichannel retailer. The objective of this research is to develop a dynamic model of channel choice and purchasing behavior that accounts for consumer heterogeneity, changes in behavior over time, and the influence of marketing activities on managerially relevant consumer behaviors. The model allows marketers to reduce their direct mailing spending while controlling for potential negative effects on their sales. More specifically, we develop a model that captures the evolution of a consumer’s buying behavior over time across retail channels and compare our model to several other approaches. We find our model outperforms existing models including standard latent class models, including those belonging to the latent transition analysis framework. Using several criteria of model performance and fit, we find a hierarchical clustering structure in the data. Each cluster responds differentially to marketing activities. We find catalogs, on average, are an effective tool to keep consumers active whereas retail promotions are more likely to influence consumers to migrate to another channel.

[1]  A. Bryan,et al.  Latent Variable Mixture Modeling: A Flexible Statistical Approach for Identifying and Classifying Heterogeneity , 2012, Nursing research.

[2]  W. Zucchini,et al.  Hidden Markov Models for Time Series: An Introduction Using R , 2009 .

[3]  Peter S. Fader,et al.  Customer-Base Valuation in a Contractual Setting: The Perils of Ignoring Heterogeneity , 2010, Mark. Sci..

[4]  Chun-Yao Huang,et al.  Excess Loyalty in Online Retailing , 2011, Int. J. Electron. Commer..

[5]  Wendy W. Moe,et al.  Capturing evolving visit behavior in clickstream data , 2004 .

[6]  Francesco Bartolucci,et al.  Three-step estimation of latent Markov models with covariates , 2015, Comput. Stat. Data Anal..

[7]  Antonello Maruotti,et al.  A semiparametric approach to hidden Markov models under longitudinal observations , 2009, Stat. Comput..

[8]  Scott A. Neslin,et al.  The Effect of Promotion on Consumption: Buying More and Consuming it Faster , 1998 .

[9]  Sanjog Misra,et al.  Disentangling Preferences and Learning in Brand Choice Models , 2012, Mark. Sci..

[10]  Francesco Bartolucci,et al.  Latent Markov Models for Longitudinal Data , 2012 .

[11]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .

[12]  Jan Bulla,et al.  Catalogue as a tool for reinforcing habits: Empirical evidence from a multichannel retailer , 2019, International Journal of Research in Marketing.

[13]  Stephanie T. Lanza,et al.  Latent Class Analysis for Developmental Research. , 2016, Child development perspectives.

[14]  Xavier Drèze,et al.  A Study of Consumer Switching Behavior Across Internet Portal Web Sites , 2003, Int. J. Electron. Commer..

[15]  Robert C. Blattberg,et al.  Market Entry and Consumer Behavior: An Investigation of a Wal-Mart Supercenter , 2006 .

[16]  Zuo-Jun Max Shen,et al.  Customer Influence Value and Purchase Acceleration in New Product Diffusion , 2012, Mark. Sci..

[17]  Maria Francesca Marino,et al.  Gaussian quadrature approximations in mixed hidden Markov models for longitudinal data: A simulation study , 2016, Comput. Stat. Data Anal..

[18]  Thorsten Wiesel,et al.  Practice Prize Paper - Marketing's Profit Impact: Quantifying Online and Off-line Funnel Progression , 2011, Mark. Sci..

[19]  Scott A. Neslin,et al.  Driving Online and Offline Sales: The Cross-Channel Effects of Digital Versus Traditional Advertising , 2011 .

[20]  Francesco Lagona,et al.  Latent time‐varying factors in longitudinal analysis: a linear mixed hidden Markov model for heart rates , 2014, Statistics in medicine.

[21]  V. Kumar,et al.  Practice Prize Report - The Power of CLV: Managing Customer Lifetime Value at IBM , 2008, Mark. Sci..

[22]  Carl F. Mela,et al.  Customer Channel Migration , 2008 .

[23]  Raghuram Iyengar,et al.  A Conjoint Model of Quantity Discounts , 2012, Mark. Sci..

[24]  Sungho Park,et al.  A Regime-Switching Model of Cyclical Category Buying , 2011, Mark. Sci..

[25]  Ingmar Visser,et al.  Seven things to remember about hidden Markov models: A tutorial on Markovian models for time series , 2011 .

[26]  Francesco Bartolucci,et al.  Causal Latent Markov Model for the Comparison of Multiple Treatments in Observational Longitudinal Studies , 2016 .

[27]  Francesco Bartolucci,et al.  Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates , 2014 .

[28]  J. Hauser,et al.  Dynamic Analysis of Consumer Response to Marketing Strategies , 1982 .

[29]  Jeroen K. Vermunt,et al.  Bias-Adjusted Three-Step Latent Markov Modeling With Covariates , 2016 .

[30]  Jason Shachat,et al.  Procuring Commodities: First Price Sealed Bid or English Auction? , 2010, Mark. Sci..

[31]  V. Pongsapukdee,et al.  Goodness of Fit of Cumulative Logit Models for Ordinal Response Categories and Nominal Explanatory variables with Two-Factor Interaction , 2007 .

[32]  Stephanie T. Lanza,et al.  A new SAS procedure for latent transition analysis: transitions in dating and sexual risk behavior. , 2008, Developmental psychology.

[33]  Prasad A. Naik,et al.  A Hierarchical Marketing Communications Model of Online and Offline Media Synergies , 2009 .

[34]  S. Neslin,et al.  Decision Process Evolution in Customer Channel Choice , 2011 .

[35]  L. Baum,et al.  Statistical Inference for Probabilistic Functions of Finite State Markov Chains , 1966 .

[36]  Ursula Y. Sullivan,et al.  Managing Marketing Communications with Multichannel Customers , 2005 .

[37]  Peter S. Fader,et al.  Portfolio Dynamics for Customers of a Multiservice Provider , 2011, Manag. Sci..

[38]  Ajay S. Vinze,et al.  Demand Heterogeneity in IT Infrastructure Services: Modeling and Evaluation of a Dynamic Approach to Defining Service Levels , 2009, Information systems research.

[39]  A. Maruotti Mixed Hidden Markov Models for Longitudinal Data: An Overview , 2011 .

[40]  Elsbeth Stern,et al.  State Mastery Learning: Dynamic Models for Longitudinal Data , 1994 .

[41]  Sanjog Misra,et al.  Observed and Unobserved Preference Heterogeneity in Brand-Choice Models , 2006 .

[42]  Bruce G. S. Hardie,et al.  A Joint Model of Usage and Churn in Contractual Settings , 2013, Mark. Sci..

[43]  Ricardo Montoya,et al.  Dynamic Allocation of Pharmaceutical Detailing and Sampling for Long-Term Profitability , 2010, Mark. Sci..

[44]  Antonello Maruotti,et al.  A mixed non‐homogeneous hidden Markov model for categorical data, with application to alcohol consumption , 2012, Statistics in medicine.

[45]  Marius F. Niculescu,et al.  Underlying Consumer Heterogeneity in Markets for Subscription-Based IT Services with Network Effects , 2012, Inf. Syst. Res..

[46]  Murray Aitkin,et al.  A general maximum likelihood analysis of overdispersion in generalized linear models , 1996, Stat. Comput..

[47]  Manohar U. Kalwani,et al.  A Price Expectations Model of Customer Brand Choice , 1990 .

[48]  Michael Lewis,et al.  Research Note: A Dynamic Programming Approach to Customer Relationship Pricing , 2005, Manag. Sci..

[49]  Vibhanshu Abhishek,et al.  Media Exposure through the Funnel: A Model of Multi-Stage Attribution , 2012 .

[50]  Thomas W. Valente,et al.  Opinion Leadership and Social Contagion in New Product Diffusion , 2011, Mark. Sci..

[51]  R. Altman Mixed Hidden Markov Models , 2007 .

[52]  Tammo H. A. Bijmolt,et al.  Hidden Markov Models in Marketing , 2017 .

[53]  Bruce G. S. Hardie,et al.  A Dynamic Changepoint Model for New Product Sales Forecasting , 2004 .

[54]  Francesco Bartolucci,et al.  Assessment of School Performance Through a Multilevel Latent Markov Rasch Model , 2009, 0909.4961.

[55]  Katherine N. Lemon,et al.  Capturing the Evolution of Customer–Firm Relationships: How Customers Become More (or Less) Valuable Over Time , 2013 .

[56]  Iain L. MacDonald,et al.  Hidden Markov Models for Time Series: An Introduction Using R (2nd Edition) , 2017 .