Improving the reliability of highly loaded rolling bearings: The effect of upstream processing on inclusions

Abstract The connection between the cleanliness of 52100 type bearing steels and their reliability has been well documented. Most research over the past 30 years has focused on sensitive compositional control during metallurgical refinement, leading to steels so clean that industrial cleanness standards are no longer suitable for quantifying further improvements. There is less literature, however, detailing the mechanism by which different impurities initiate rolling contact fatigue (RCF). Early work focused on comparing fatigue lives with cleanness ratings, which include a worst field analysis to determine the inclusion content and post-failure analysis to determine damage nucleation sites. The stress concentrations around discontinuities in the steel matrix can now however be visualised using computational modelling techniques. There is now a much clearer picture of how non-metallic inclusions (NMIs) nucleate fatigue damage by causing changes in the subsurface microstructure, including white etching regions in the form of butterflies. Size, morphology, distribution and type of inclusion are important factors for determining their role in RCF and the ability to control these variables could lead to improved performance. The inclusion character is greatly influenced by the steelmaking process, from initial melt through to casting, as well as hot deformation. While the impact of microchemical banding on RCF is not well understood, the effect of microsegregation on the phases that form can be modelled using simple calculations. Hot rolling techniques also influence the steel cleanliness, as NMIs can be plastically deformed or broken up and voids can be introduced around them, thus affecting the interface with the matrix. Understanding the microstructure evolution from materials characterisation and the ability to model the process could establish an optimum degree of rolling reduction. This could greatly aid the production of large bearings, as some manufacturers currently make them from very large ingots to achieve the necessary reduction ratio and therefore required level of performance.

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  Jan-Olof Andersson,et al.  The Thermo-Calc databank system☆ , 1985 .

[3]  Paul C. Paris,et al.  Subsurface crack initiation and propagation mechanisms in gigacycle fatigue , 2010 .

[4]  M. Hillert,et al.  Role of back-diffusion studied by computer simulation , 1999 .

[5]  John Ågren,et al.  Numerical treatment of diffusional reactions in multicomponent alloys , 1982 .

[6]  Jpm Johan Hoefnagels,et al.  Microstructural banding effects clarified through micrographic digital image correlation , 2010 .

[7]  E. Bogren,et al.  Determination of the critical inclusion size with respect to void formation during hot working , 1975 .

[8]  Erwin V. Zaretsky,et al.  Selection of rolling-element bearing steels for long-life applications , 1986 .

[9]  W. Rindler,et al.  Computer simulation of the brittle temperature range (BTR) for hot cracking in steels , 2000 .

[10]  John J. Jonas,et al.  A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization , 1996 .

[11]  Debalay Chakrabarti,et al.  Prediction of Inhomogeneous Distribution of Microalloy Precipitates in Continuous-Cast High-Strength, Low-Alloy Steel Slab , 2012, Metallurgical and Materials Transactions A.

[12]  H. Combeau,et al.  Numerical model for prediction of the final segregation pattern of bearing steel ingots , 1993 .

[13]  C. M. Sellars,et al.  Fatigue tolerant design of steel components based on the size of large inclusions , 2002 .

[14]  J. J. C. Hoo,et al.  Effect of Steel Manufacturing Processes on the Quality of Bearing Steels , 1988 .

[15]  W. Trojahn,et al.  Experiences in Using Ultrasonic Testing of Bearing Steel for Demanding Applications , 2006 .

[16]  K. Easterling,et al.  An in situ sem study of void development around inclusions in steel during plastic deformation , 1976 .

[17]  Claude Bathias,et al.  Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength , 2002 .

[18]  Gregory N. Haidemenopoulos,et al.  STEELS FOR BEARINGS , 2016 .

[19]  Brian G. Thomas,et al.  Inclusion Investigation during Clean Steel Production at Baosteel , 2003 .

[20]  Gilles Dudragne,et al.  Influence of inclusion pairs, clusters and stringers on the lower bound of the endurance limit of bearing steels , 2003 .

[21]  R. Meilland,et al.  Methods for assessment of cleanliness in superclean steels. Application to bearing steels , 1996 .

[22]  K. Hiraoka,et al.  Initiation Behavior of Crack Originated from Non-Metallic Inclusion in Rolling Contact Fatigue , 2010 .

[23]  A Melander Simulation of the Behaviour of Short Cracks at Inclusions Under Rolling Contact Fatigue Loading — Specially the Effect of Plasticity , 1998 .

[24]  Victor Oduguwa,et al.  A review of rolling system design optimisation , 2006 .

[25]  M. Larsson,et al.  The effect of stress amplitude on the cause of fatigue crack initiation in a spring steel , 1993 .

[26]  Hans Keife,et al.  A study of void closure during plastic deformation , 1980 .

[27]  Y. Mutoh,et al.  Rolling contact fatigue behavior of sintered and hardened steels , 2002 .

[28]  F. C. Thompson,et al.  Metal Fatigue , 1962, Nature.

[29]  T. R. Meadowcroft,et al.  Microstructural model for hot strip rolling of high-strength low-alloy steels , 2000 .

[30]  Ra Rege,et al.  Microcleanliness of Steel—A New Quantitative TV Rating Method , 1970 .

[31]  D. Dulieu,et al.  Ladle Refining: An Integral Part of Bearing Steel Manufacture , 1988 .

[32]  G. Baudry,et al.  Influence of Fiber Flow on Rolling Contact Fatigue Life: Model Validation for Non-Metallic Inclusion , 2012 .

[33]  K. Hiraoka,et al.  Study on Flaking Process in Bearings by White Etching Area Generation , 2006 .

[34]  K. Hiraoka,et al.  Recent Evaluation Procedures of Nonmetallic Inclusions in Bearing Steels (Statistics of Extreme Value Method and Development of Higher Frequency Ultrasonic Testing Method) , 2002 .

[35]  G. T. Hahn,et al.  Rolling contact deformation, etching effects, and failure of high-strength bearing steel , 1990 .

[36]  M.-H. Evans White structure flaking (WSF) in wind turbine gearbox bearings: effects of ‘butterflies’ and white etching cracks (WECs) , 2012 .

[37]  J. Chipman,et al.  Activity of carbon and solubility of carbides in the FCC Fe-Mo-C, Fe-Cr-C, and Fe-V-C alloys , 1972 .

[38]  M. Pietrzyk,et al.  Analysis of work hardening and recrystallization during the hot working of steel using a statistically based internal variable model , 2003 .

[39]  J. Kirkaldy,et al.  Simulation of Banding in Steels , 1962 .

[40]  Daniel Girodin,et al.  Rolling bearing applications: some trends in materials and heat treatments , 2012 .

[41]  Taylan Altan,et al.  Finite Element Analysis of Three-Dimensional Metal Flow in Cold and Hot Forming Processes , 1994 .

[42]  A. Fazekas,et al.  A New Methodology for Predicting Fatigue Properties of Bearing Steels: From X-Ray Micro-Tomography and Ultrasonic Measurements to the Bearing Lives Distribution , 2010 .

[43]  R. A. Grange Effect of microstructural banding in steel , 1971 .

[44]  Kazuya Hashimoto,et al.  Study of rolling contact fatigue of bearing steels in relation to various oxide inclusions , 2011 .

[45]  Hitesh K. Trivedi,et al.  Rolling Contact Fatigue Life and Spall Propagation Characteristics of AISI M50, M50 NiL, and AISI 52100, Part III: Metallurgical Examination , 2009 .

[46]  J. K. Brimacombe,et al.  Heat transfer and microstructure during the early stages of metal solidification , 1995 .

[47]  H. O. Walp,et al.  The Effect of Material Variables on the Fatigue Life of AISI 52100 Steel Ball Bearings , 1962 .

[48]  Roumen Petrov,et al.  EBSD investigation of the crack initiation and TEM/FIB analyses of the microstructural changes around the cracks formed under Rolling Contact Fatigue (RCF) , 2010 .

[49]  W. Marsden I and J , 2012 .

[50]  K. Hashimoto,et al.  Effect of sulphide inclusions on rolling contact fatigue life of bearing steels , 2012 .

[51]  Xin-Hua Wang,et al.  Thermodynamic calculation and MnS solubility of Mn-Ti oxide formation in Si-Mn-Ti deoxidized steel , 2010 .

[52]  E. Zaretsky,et al.  Rolling bearing steels – a technical and historical perspective , 2012 .

[53]  E. Kozeschnik A scheil-gulliver model with back-diffusion applied to the microsegregation of chromium in Fe-Cr-C alloys , 2000 .

[54]  A. Gittins D) Effect of oxygen on hot workability of steel , 1977 .

[55]  Chunhui Luo,et al.  Evolution of voids close to an inclusion in hot deformation of metals , 2001 .

[56]  Y. Murakami,et al.  Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. II: Fatigue limit evaluation based on statistics for extreme values of inclusion size , 1989 .

[57]  Pedro E.J. Rivera-Díaz-del-Castillo,et al.  Rolling contact fatigue in bearings: multiscale overview , 2012 .

[58]  G. S. Cole,et al.  Experimental observations of dendritic growth , 1972 .

[59]  Kevin L. Thompson,et al.  Rolling Contact Fatigue Life and Spall Propagation of AISI M50, M50NiL, and AISI 52100, Part I: Experimental Results , 2009 .

[60]  T. Makino,et al.  Influence of the Inclusion Shape on the Rolling Contact Fatigue Life of Carburized Steels , 2013, Metallurgical and Materials Transactions A.

[61]  Standard Test Methods for Determining the Inclusion Content of Steel 1 , 2013 .

[62]  M. Nagumo,et al.  Failure Process of Bearing Steel in Rolling Contact Fatigue , 1971 .

[63]  John M. Beswick Advances and state of the art in bearing steel quality assurance , 2007 .

[64]  D. Brooksbank,et al.  STRESS FIELDS AROUND INCLUSIONS AND THEIR RELATION TO MECHANICAL PROPERTIES , 1972 .

[65]  Arne Melander A finite element study of short cracks with different inclusion types under rolling contact fatigue load , 1997 .

[66]  Ernst Kozeschnik,et al.  Computational Analysis of Precipitation during Continuous Casting of Microalloyed Steel , 2010 .

[67]  Antonio Gabelli,et al.  The fatigue limit of bearing steels – Part I: A pragmatic approach to predict very high cycle fatigue strength , 2012 .

[68]  S. van der Zwaag,et al.  Modelling steady state deformation of fcc metals by non-equilibrium thermodynamics , 2007 .

[69]  Jm Hampshire,et al.  Quantitative Inclusion Ratings and Continuous Casting: User Experience and Relationships with Rolling Contact Fatigue Life , 1988 .

[70]  M. Fujisawa On the Hardenability of High Carbon Steels , 1954 .

[71]  Siamak Serajzadeh Prediction of microstructural changes during hot rod rolling , 2003 .

[72]  H. Fredriksson,et al.  Solidification of iron-base alloys , 1982 .

[73]  W. M. Rainforth,et al.  The effect of microstructure and composition on the rolling contact fatigue behaviour of cast bainitic steels , 2007 .

[74]  Erin M. Harley,et al.  Reaction Times of Skiers and Snowboarders , 2010 .

[75]  Discriminating pores from inclusions in rolled steel by ultrasonic echo analysis , 2011 .

[76]  W. Spitzig Effect of sulfide inclusion morphology and pearlite banding on anisotropy of mechanical properties in normalized C-Mn steels , 1983 .

[77]  Sumio Kobayashi A Mathematical Model for Solute Redistribution during Dendritic Solidification , 1988 .

[78]  B. Thomas,et al.  State of the art in the control of inclusions during steel ingot casting , 2006 .

[79]  R. Fougères,et al.  From White Etching Areas Formed Around Inclusions to Crack Nucleation in Bearing Steels Under Rolling Contact Fatigue , 1998 .

[80]  K. Tanaka,et al.  A theory of fatigue crack initiation at inclusions , 1982 .

[81]  F. Vodopivec,et al.  Relative plasticity of manganese sulphide inclusions during rolling of some industrial steels , 1980 .

[82]  John J. Jonas,et al.  Prediction of steel flow stresses at high temperatures and strain rates , 1991 .

[83]  T. Sakai,et al.  Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue , 2002 .

[84]  Gs Tayeh,et al.  Impact of Steel Quality on Integrated Automotive Wheel Bearing Performance , 1988 .

[85]  J. Beswick The effect of chromium in high carbon bearing steels , 1987 .

[86]  L. Höglund,et al.  Thermo-Calc & DICTRA, computational tools for materials science , 2002 .

[87]  D. Matlock,et al.  Carbon diffusivity in multi-component austenite , 2011 .

[88]  H. Muro,et al.  Microstructural, microhardness and residual stress changes due to rolling contact , 1970 .

[89]  Qing Chen,et al.  Measurement of the critical size of inclusions initiating contact fatigue cracks and its application in bearing steel , 1991 .

[90]  Hyungjun Kim,et al.  A new free surface scheme for analysis of plastic deformation in shape rolling , 2000 .

[91]  Hyungjun Kim,et al.  Analytic model for the prediction of mean effective strain in rod rolling process , 2001 .

[92]  H. Brody Solute redistribution in dendritic solidification. , 1965 .

[93]  S. Zwaag,et al.  A model for ferrite/pearlite band formation and prevention in steels , 2004 .

[94]  E. Alley,et al.  Microstructure-sensitive modeling of rolling contact fatigue , 2010 .

[95]  M. E. Kassner,et al.  Current issues in recrystallization: a review , 1997 .

[96]  Y. Prawoto,et al.  Effect of prior austenite grain size on the morphology and mechanical properties of martensite in me , 2012 .

[97]  Ulf Ståhlberg,et al.  Void initiation close to a macro-inclusion during single pass reductions in the hot rolling of steel slabs : A numerical study , 2005 .

[98]  S. Zwaag,et al.  Modelling the steady state deformation stress under various deformation conditions using a single irreversible thermodynamics based formulation , 2009 .

[99]  E. Kozeschnik,et al.  Generalized Nearest-Neighbor Broken-Bond Analysis of Randomly Oriented Coherent Interfaces in Multicomponent Fcc and Bcc Structures , 2009 .

[100]  Pk Adishesha Effect of Steel Making and Processing Parameters on Carbide Banding in Commercially Produced ASTM A-295 52100 Bearing Steel , 2002 .

[101]  I. Ohnaka Mathematical Analysis of Solute Redistribution during Solidification with Diffusion in Solid Phase , 1986 .

[102]  Nelson H. Forster,et al.  Stress Field Evolution in a Ball Bearing Raceway Fatigue Spall , 2009 .

[103]  M. J. Luton,et al.  Recovery and recrystallization of carbon steel between intervals of hot working , 1975 .

[104]  C. Beckermann,et al.  A unified model of microsegregation and coarsening , 1999 .

[105]  Leon M. Keer,et al.  On white etching band formation in rolling bearings , 1995 .

[106]  J. Barbera,et al.  Contact mechanics , 1999 .

[107]  W. Xu,et al.  Ferrite/Pearlite Band Prevention in Dual Phase and TRIP Steels : Model Development , 2005 .

[108]  Werner Trojahn,et al.  Steel Cleanliness and Bearing Life , 2012 .

[109]  The influence of material build up around artificial defects on rolling contact fatigue life and failure mechanism , 2006 .

[110]  Christoph Beckermann,et al.  Simulation of convection and macrosegregation in a large steel ingot , 1999 .

[111]  敬宜 村上,et al.  Quantitative Evaluation of Effects of Nonmetallic Inclusions on Fatigue Strength of High Strength Steel , 1988 .

[112]  I. Jung Overview of the applications of thermodynamic databases to steelmaking processes , 2010 .

[113]  G. Krauss Solidification, segregation, and banding in carbon and alloy steels , 2003 .

[114]  R. Sayles,et al.  Influence of Wear Debris on Rolling Contact Fatigue , 1982 .

[115]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[116]  M. E. Kassner,et al.  Current issues in recrystallization: a review , 1997 .

[117]  Stefano Beretta,et al.  Extreme value models for the assessment of steels containing multiple types of inclusion , 2006 .

[118]  Ap Voskamp,et al.  Fatigue and Material Response in Rolling Contact , 1998 .

[119]  S. Pathak,et al.  Some studies on the impact behavior of banded microalloyed steel , 1996 .

[120]  U. F. Kocks,et al.  Kinetics of flow and strain-hardening☆ , 1981 .

[121]  H. Bomas,et al.  Rolling Contact and Compression-Torsion Fatigue of 52100 Steel with Special Regard to Carbide Distribution , 2012 .

[122]  J. Sietsma,et al.  The Cementite Spheroidization Process in High-Carbon Steels with Different Chromium Contents , 2008 .

[123]  Ulf Ståhlberg,et al.  An alternative way for evaluating the deformation of MnS inclusions in hot rolling of steel , 2002 .

[124]  X. Sauvage,et al.  Atomic-scale observation and modelling of cementite dissolution in heavily deformed pearlitic steels , 2000 .

[125]  J. Verhoeven A review of microsegregation induced banding phenomena in steels , 2000 .

[126]  H. Hamdi,et al.  Numerical modelling of fatigue crack's initiation in rolling contact of sintered steels , 2005 .

[127]  E. Nes,et al.  Modelling of work hardening and stress saturation in FCC metals , 1997 .

[128]  G. Baudry,et al.  From cleanliness to rolling fatigue life of bearings -- A new approach , 1998 .

[129]  J. Chipman,et al.  Thermodynamics of the fcc Fe-Mn-C and Fe-Si-C alloys , 1972 .

[130]  T. W. Clyne,et al.  Solute redistribution during solidification with rapid solid state diffusion , 1981 .

[131]  S Ito,et al.  Accelerated Rolling Contact Fatigue Test by a Cylinder-to-Ball Rig , 1982 .

[132]  Alexander D. Wilson The influence of thickness and rolling ratio on the inclusion behavior in plate steels , 1979 .

[133]  J. Ågren,et al.  Computer simulations of cementite dissolution in austenite , 1984 .

[134]  Ginzburg Steel-Rolling Technology: Theory and Practice , 1989 .

[135]  C. M. Sellars,et al.  Modelling microstructural development during hot rolling , 1990 .

[136]  J. Mathews Upon the constitution of binary alloys , 1902 .

[137]  K. Hiraoka,et al.  Effect of inclusion/matrix interface cavities on internal-fracture-type rolling contact fatigue life , 2011 .

[138]  Helen V. Atkinson,et al.  Characterization of inclusions in clean steels: a review including the statistics of extremes methods , 2003 .

[139]  Tatsuo Sakai,et al.  Experimental Reconfirmation of Characteristic S-N Property for High Carbon Chromium Bearing Steel in Wide Life Region in Rotating Bending. , 2000 .

[140]  T. Mcnelley,et al.  Analysis of microporosity associated with insoluble carbides in VIM-VAR AISI M-50 steel , 1987 .

[141]  M. Nagumo,et al.  Structural Alterations of Bearing Steels under Rolling Contact Fatigue , 1970 .

[142]  H. Bhadeshia,et al.  Influence of silicon on cementite precipitation in steels , 2008 .

[143]  Douglas Glover,et al.  A Ball-Rod Rolling Contact Fatigue Tester , 1982 .

[144]  T Lund,et al.  Oxygen Content, Oxidic Microinclusions, and Fatigue Properties of Rolling Bearing Steels , 1988 .

[145]  Nelson H. Forster,et al.  Rolling Contact Fatigue Life and Spall Propagation of AISI M50, M50NiL, and AISI 52100, Part II: Stress Modeling , 2009 .

[146]  Kozo Osakada,et al.  Finite element method for rigid-plastic analysis of metal forming—Formulation for finite deformation , 1982 .

[147]  A. Fazekas,et al.  A new methodology based on X-ray micro-tomography to estimate stress concentrations around inclusions in high strength steels , 2009 .

[148]  J. Monnot,et al.  Relationship of Melting Practice, Inclusion Type, and Size with Fatigue Resistance of Bearing Steels , 1988 .

[149]  Rolf Sandström,et al.  A model for hot working occurring by recrystallization , 1974 .

[150]  Ulf Ståhlberg,et al.  Deformation of inclusions during hot rolling of steels , 2001 .

[151]  C. M. Sellars,et al.  Recrystallization and grain growth in hot rolling , 1979 .

[152]  E Schreiber,et al.  Effects of Material Properties on Bearing Steel Fatigue Strength , 1988 .

[153]  Robert J.K. Wood,et al.  A FIB/TEM study of butterfly crack formation and white etching area (WEA) microstructural changes under rolling contact fatigue in 100Cr6 bearing steel , 2013 .

[154]  E. Scheil Bemerkungen zur Schichtkristallbildung , 1942 .

[155]  S. W. Dean,et al.  Sub-Surface Initiated Rolling Contact Fatigue—Influence of Non-Metallic Inclusions, Processing History, and Operating Conditions , 2010 .

[156]  L. Höglund,et al.  An experimental and theoretical study of cementite dissolution in an Fe-Cr-C alloy , 1991 .

[157]  M. Flemings Solidification processing , 1974, Metallurgical and Materials Transactions B.

[158]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[159]  S. Hosseini,et al.  An In-Situ Scanning Electron Microscopy Study of the Bonding between MnS Inclusions and the Matrix during Tensile Deformation of Hot-Rolled Steels , 2007 .

[160]  H. Hänninen,et al.  Anisotropic distribution of non-metallic inclusions in a forged steel roll and its influence on fatigue limit , 2012 .

[161]  C. M. Sellars,et al.  Computer modelling of hot-working processes , 1985 .

[162]  M. Flemings B) Formation of oxide inclusions during solidification , 1977 .

[163]  P. Hodgson,et al.  A study of pore closure and welding in hot rolling process , 1996 .

[164]  S. Zwaag,et al.  Irreversible thermodynamics modelling of plastic deformation of metals , 2008 .

[165]  John M. Beswick Bearing Steel Technology-Advances and State of the Art in Bearing Steel Quality Assurance: 7th Volume , 2007 .