Phase-shifting interferometry with equal phase steps by use of a frequency-tunable diode laser and a Fabry-Perot cavity.

A phase-shifting interferometry (PSI) with equal phase steps by use of a frequency-tunable diode laser and a Fabry-Perot cavity is proposed for the Carré algorithm. The measurement accuracy of the Carré algorithm depends on the equality of the phase steps. Using the Fabry-Perot cavity as a highly stable optical frequency reference, a high degree of phase step equality can be realized in PSI with an optical frequency shift. Our experimental scheme realizes an optical frequency step equality higher than 5.1 x 10(-5) and a measurement repeatability of lambda/800.

[1]  K. Hibino,et al.  Phase shifting for nonsinusoidal waveforms with phase-shift errors , 1995 .

[2]  Qian Kemao,et al.  Determination of the best phase step of the Carré algorithm in phase shifting interferometry , 2000 .

[3]  P J de Groot,et al.  Numerical simulations of vibration in phase-shifting interferometry. , 1996, Applied optics.

[4]  K Murata,et al.  Digital phase-measuring interferometry with a tunable laser diode. , 1987, Optics letters.

[5]  Paul Taylor,et al.  Multiphase fringe analysis with unknown phase shifts , 1994 .

[6]  G. Stoilov,et al.  Phase-stepping interferometry: Five-frame algorithm with an arbitrary step , 1997 .

[7]  L. Cai,et al.  Phase-shift extraction and wave-front reconstruction in phase-shifting interferometry with arbitrary phase steps. , 2003, Optics letters.

[8]  D. Malacara,et al.  Interferogram Analysis for Optical Testing , 2018 .

[9]  K Creath,et al.  Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry. , 1995, Applied optics.

[10]  Y. Koga,et al.  Phase locking of a continuous-wave optical parametric oscillator to an optical frequency comb for optical frequency synthesis , 2004, IEEE Journal of Quantum Electronics.

[11]  K. Hibino,et al.  Phase-shifting algorithms for nonlinear and spatially nonuniform phase shifts , 1997 .

[12]  S. W. Kim,et al.  Numerical correction of reference phases in phase-shifting interferometry by iterative least-squares fitting. , 1994, Applied optics.

[13]  Naoki Kuramoto,et al.  Interferometric determination of the diameter of a silicon sphere using a direct optical frequency tuning system , 2003, IEEE Trans. Instrum. Meas..

[14]  X Chen,et al.  Phase-shifting interferometry with uncalibrated phase shifts. , 2000, Applied optics.

[15]  P. Carré Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures , 1966 .

[16]  P. Rastogi,et al.  An integral approach to phase shifting interferometry using a super-resolution frequency estimation method. , 2004, Optics express.

[17]  Kieran G. Larkin,et al.  Design and assessment of symmetrical phase-shifting algorithms , 1992 .

[18]  P. Ciddor Refractive index of air: new equations for the visible and near infrared. , 1996, Applied optics.

[19]  T. Yatagai,et al.  Generalized phase-shifting interferometry , 1991 .

[20]  T. Eiju,et al.  Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm. , 1987, Applied optics.

[21]  Pramod Rastogi,et al.  Generalized phase-shifting interferometry by use of a direct stochastic algorithm for global search. , 2004, Optics letters.