Age of onset of amyotrophic lateral sclerosis is modulated by a locus on 1p34.1

Amyotrophic lateral sclerosis (ALS) is the third most common adult-onset neurodegenerative disease. Individuals with ALS rapidly progress to paralysis and die from respiratory failure within 3 to 5 years after symptom onset. Epidemiological factors explain only a modest amount of the risk for ALS. However, there is growing evidence of a strong genetic component to both familial and sporadic ALS risk. The International Consortium on Amyotrophic Lateral Sclerosis Genetics was established to bring together existing genome-wide association cohorts and identify sporadic ALS susceptibility and age at symptom onset loci. Here, we report the results of a meta-analysis of the International Consortium on Amyotrophic Lateral Sclerosis Genetics genome-wide association samples, consisting of 4243 ALS cases and 5112 controls from 13 European ancestry cohorts from across the United States and Europe. Eight genomic regions provided evidence of association with ALS, including 9p21.2 (rs3849942, odds ratio [OR] = 1.21; p = 4.41 × 10(-7)), 17p11.2 (rs7477, OR = 1.30; p = 2.89 × 10(-7)), and 19p13 (rs12608932, OR = 1.37, p = 1.29 × 10(-7)). Six genomic regions were associated with age at onset of ALS. The strongest evidence for an age of onset locus was observed at 1p34.1, with comparable evidence at rs3011225 (R(2)(partial) = 0.0061; p = 6.59 × 10(-8)) and rs803675 (R(2)(partial) = 0.0060; p = 6.96 × 10(-8)). These associations were consistent across all 13 cohorts. For rs3011225, individuals with at least 1 copy of the minor allele had an earlier average age of onset of over 2 years. Identifying the underlying pathways influencing susceptibility to and age at onset of ALS may provide insight into the pathogenic mechanisms and motivate new pharmacologic targets for this fatal neurodegenerative disease.

Carl D Langefeld | Aleksey Shatunov | Gabriele Mora | Vincent Meininger | Wim Robberecht | Ammar Al-Chalabi | Orla Hardiman | Ewout J. N. Groen | Peter M Andersen | Teepu Siddique | Jonathan L Haines | Jonathan D Glass | Leonard H van den Berg | J. Haines | M. Pericak-Vance | Robert H. Brown | A. Al-Chalabi | C. Shaw | K. Ahmeti | S. Ajroud‐Driss | P. Andersen | J. Armstrong | A. Birve | H. Blauw | L. Bruijn | Wenjie Chen | A. Chiò | M. Comeau | S. Cronin | F. Diekstra | Athina Soraya Gkazi | J. Glass | Josh D Grab | O. Hardiman | S. Heller | Jie Huang | W. Hung | J. Jaworski | Ashley Jones | H. Khan | J. Landers | C. Langefeld | P. Leigh | M. Marion | R. McLaughlin | V. Meininger | J. Melki | Jack W Miller | G. Mora | E. Rampersaud | W. Robberecht | Laurie P Russell | F. Salachas | C. Saris | A. Shatunov | N. Siddique | T. Siddique | Bradley N Smith | R. Sufit | S. Topp | B. Traynor | C. Vance | P. van Damme | L. H. van den Berg | M. V. van Es | P. V. van Vught | J. Veldink | Yi Yang | J. Zheng | Margaret A Pericak-Vance | Russell L McLaughlin | Bryan J Traynor | Simon Topp | Christopher E Shaw | Lucie Bruijn | Caroline Vance | Adriano Chio | Simon Cronin | Judith Melki | Jan H Veldink | Evadnie Rampersaud | Robert H Brown | Michael A van Es | Ashley Jones | Bradley N. Smith | Nailah Siddique | Miranda C Marion | Hylke M Blauw | John E Landers | Robert Sufit | James M Jaworski | Kreshnik B Ahmeti | Senda Ajroud-Driss | Jennifer Armstrong | Anne Birve | Wenjie Chen | Mary C Comeau | Frank P Diekstra | Athina Soraya Gkazi | Ewout J Groen | Scott Heller | Jie Huang | Wu-Yen Hung | Humaira Khan | P Nigel Leigh | Francois Salachas | Christiaan G Saris | Philip van Damme | Paul W van Vught | Yi Yang | J G Zheng | Laurie P. Russell | Jack W. Miller | J. Zheng | S. Ajroud-Driss | Robert H. Brown | Kreshnik B. Ahmeti | J. Haines | C. Shaw | R. Mclaughlin

[1]  E. Beghi,et al.  Descriptive epidemiology of amyotrophic lateral sclerosis: new evidence and unsolved issues , 2007, Journal of Neurology, Neurosurgery, and Psychiatry.

[2]  D. Thurman,et al.  How common are the “common” neurologic disorders? , 2007, Neurology.

[3]  E. Beghi,et al.  Signs and symptoms at diagnosis of amyotrophic lateral sclerosis: a population‐based study in southern Italy , 2006, European journal of neurology.

[4]  David Heckerman,et al.  Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide association study , 2010, The Lancet Neurology.

[5]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[6]  Ewout J N Groen,et al.  Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis , 2009, Nature Genetics.

[7]  A. Al-Chalabi,et al.  The risk to relatives of patients with sporadic amyotrophic lateral sclerosis , 2011, Brain : a journal of neurology.

[8]  Luigi Ferrucci,et al.  Abundant Quantitative Trait Loci Exist for DNA Methylation and Gene Expression in Human Brain , 2010, PLoS genetics.

[9]  Janel O. Johnson,et al.  Kinesin-associated protein 3 (KIFAP3) has no effect on survival in a population-based cohort of ALS patients , 2010, Proceedings of the National Academy of Sciences.

[10]  J L Haines,et al.  Supporting Online Material Materials and Methods Figs. S1 to S7 Tables S1 to S4 References Mutations in the Fus/tls Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2022 .

[11]  A. Al-Chalabi,et al.  Amyotrophic lateral sclerosis in an urban setting: a population based study of inner city London. , 2006, Journal of neurology.

[12]  Orla Hardiman,et al.  A genome-wide association study of sporadic ALS in a homogenous Irish population. , 2007, Human molecular genetics.

[13]  P. Sham,et al.  Age at onset in sod1-mediated amyotrophic lateral sclerosis shows familiality , 2007, Neurogenetics.

[14]  P. Tsai,et al.  A hexanucleotide repeat expansion in C9ORF72 causes familial and sporadic ALS in Taiwan , 2012, Neurobiology of Aging.

[15]  P. Sparén,et al.  Familial aggregation of amyotrophic lateral sclerosis , 2009, Annals of neurology.

[16]  T. Gillingwater,et al.  A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. , 2004, American journal of human genetics.

[17]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[18]  A. Kaplin,et al.  HOW COMMON ARE THE “COMMON” NEUROLOGIC DISORDERS? , 2007, Neurology.

[19]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[20]  E. Beghi,et al.  Incidence of amyotrophic lateral sclerosis in southern Italy: a population based study , 2005, Journal of Neurology, Neurosurgery & Psychiatry.

[21]  A. Farmer,et al.  Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome-wide association study , 2010, The Lancet Neurology.

[22]  A. Chiò,et al.  Prevalence of SOD1 mutations in the Italian ALS population , 2008, Neurology.

[23]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[24]  J. Haines,et al.  Lack of association between apolipoprotein E genotype and sporadic amyotrophic lateral sclerosis , 1998, Neurogenetics.

[25]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[26]  V. Meininger,et al.  Three families with amyotrophic lateral sclerosis and frontotemporal dementia with evidence of linkage to chromosome 9p. , 2007, Archives of neurology.

[27]  A. Al-Chalabi,et al.  An estimate of amyotrophic lateral sclerosis heritability using twin data , 2010, Journal of Neurology, Neurosurgery & Psychiatry.

[28]  Sonja W. Scholz,et al.  Genome-wide genotyping in amyotrophic lateral sclerosis and neurologically normal controls: first stage analysis and public release of data , 2007, The Lancet Neurology.

[29]  R. Ophoff,et al.  ITPR2 as a susceptibility gene in sporadic amyotrophic lateral sclerosis: a genome-wide association study , 2007, The Lancet Neurology.

[30]  H. Horvitz,et al.  A frequent ala 4 to val superoxide dismutase-1 mutation is associated with a rapidly progressive familial amyotrophic lateral sclerosis. , 1994, Human molecular genetics.

[31]  Patrizia Sola,et al.  Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS , 2011, Neuron.

[32]  Sonja W. Scholz,et al.  A two-stage genome-wide association study of sporadic amyotrophic lateral sclerosis. , 2009, Human molecular genetics.

[33]  J. Haines,et al.  Apolipoprotein E is associated with age at onset of amyotrophic lateral sclerosis , 2004, Neurogenetics.

[34]  O. Hardiman,et al.  Aggregation of neurodegenerative disease in ALS kindreds , 2009, Amyotrophic Lateral Sclerosis.

[35]  L. Goldstein,et al.  The sex ratio in amyotrophic lateral sclerosis: A population based study , 2010, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[36]  Takeo Kato,et al.  Mutations of optineurin in amyotrophic lateral sclerosis , 2010, Nature.

[37]  A. Morris,et al.  Thioredoxin reductase 1 haplotypes modify familial amyotrophic lateral sclerosis onset. , 2009, Free radical biology & medicine.

[38]  Ammar Al-Chalabi,et al.  ALSOD: The Amyotrophic Lateral Sclerosis Online Database , 2008, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[39]  J. Haines,et al.  Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia , 2011, Nature.

[40]  Claire L. Simpson,et al.  Reduced expression of the Kinesin-Associated Protein 3 (KIFAP3) gene increases survival in sporadic amyotrophic lateral sclerosis , 2009, Proceedings of the National Academy of Sciences.

[41]  C. Lewis,et al.  Modelling the Effects of Penetrance and Family Size on Rates of Sporadic and Familial Disease , 2011, Human Heredity.

[42]  O. Hardiman,et al.  Incidence and prevalence of ALS in Ireland, 1995–1997 , 1999, Neurology.

[43]  P. Worms The epidemiology of motor neuron diseases: a review of recent studies , 2001, Journal of the Neurological Sciences.

[44]  A. Al-Chalabi,et al.  Keeping up with genetic discoveries in amyotrophic lateral sclerosis: The ALSoD and ALSGene databases , 2011, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[45]  Till Acker,et al.  Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration , 2001, Nature Genetics.

[46]  C. Armon Smoking may be considered an established risk factor for sporadic ALS , 2009, Neurology.

[47]  Kuixing Zhang,et al.  Whole-genome analysis of sporadic amyotrophic lateral sclerosis. , 2007, The New England journal of medicine.

[48]  Sudha Seshadri,et al.  Genome-wide analysis of genetic loci associated with Alzheimer disease. , 2010, JAMA.

[49]  P. Andersen,et al.  Chromogranin B P413L variant as risk factor and modifier of disease onset for amyotrophic lateral sclerosis , 2009, Proceedings of the National Academy of Sciences.

[50]  Frank Baas,et al.  Genetic variation in DPP6 is associated with susceptibility to amyotrophic lateral sclerosis , 2008, Nature Genetics.