Silicon-organic hybrid (SOH) Mach-Zehnder modulators for 100 GBd PAM4 signaling with sub-1 dB phase-shifter loss.

We report on compact and efficient silicon-organic hybrid (SOH) Mach-Zehnder modulators (MZM) with low phase-shifter insertion loss of 0.7 dB. The 280 µm-long phase shifters feature a π-voltage-length product of 0.41 Vmm and a loss-efficiency product as small as aUπL = 1.0 VdB. The device performance is demonstrated in a data transmission experiment, where we generate on-off-keying (OOK) and four-level pulse-amplitude modulation (PAM4) signals at symbol rates of 100 GBd, resulting in line rates of up to 200 Gbit/s. Bit error ratios are below the threshold for hard-decision forward error correction (HD-FEC) with 7% coding overhead, leading to net data rates of 187 Gbit/s. This is the highest PAM4 data rate ever achieved for a sub-1 mm silicon photonic MZM.

[1]  Y. Sato,et al.  A Method of Self-Recovering Equalization for Multilevel Amplitude-Modulation Systems , 1975, IEEE Trans. Commun..

[2]  Min-Cheol Oh,et al.  Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore , 2001 .

[3]  Qianfan Xu,et al.  Guiding and confining light in void nanostructure. , 2004, Optics letters.

[4]  B. Chen,et al.  Environmental Stress Testing of Electro–Optic Polymer Modulators , 2009, Journal of Lightwave Technology.

[5]  Takashi Mizuochi,et al.  Forward error correction for 100 G transport networks , 2010, IEEE Communications Magazine.

[6]  Mingbin Yu,et al.  Fabrication of low loss and high speed silicon optical modulator using doping compensation method. , 2011, Optics express.

[7]  D Hillerkuss,et al.  42.7 Gbit/s electro-optic modulator in silicon technology. , 2011, Optics express.

[8]  Jingdong Luo,et al.  Tailored Organic Electro-optic Materials and Their Hybrid Systems for Device Applications† , 2011 .

[9]  Michael Hochberg,et al.  Low-loss asymmetric strip-loaded slot waveguides in silicon-on-insulator , 2011 .

[10]  Gianpietro Cagnoli,et al.  Bulk optical absorption of high resistivity silicon at 1550 nm. , 2013, Optics letters.

[11]  C. Koos,et al.  Low-Loss Silicon Strip-to-Slot Mode Converters , 2013, IEEE Photonics Journal.

[12]  Ruimin Xu,et al.  Benzocyclobutene barrier layer for suppressing conductance in nonlinear optical devices during electric field poling , 2014 .

[13]  Jessica E. Donehue,et al.  Plasmon-Enhanced Brightness and Photostability from Single Fluorescent Proteins Coupled to Gold Nanorods , 2014 .

[14]  Raluca Dinu,et al.  100 GHz silicon–organic hybrid modulator , 2014, Light: Science & Applications.

[15]  Wolfgang Freude,et al.  DAC-Less Amplifier-Less Generation and Transmission of QAM Signals Using Sub-Volt Silicon-Organic Hybrid Modulators , 2015, Journal of Lightwave Technology.

[16]  Wolfgang Freude,et al.  Femtojoule electro-optic modulation using a silicon–organic hybrid device , 2015, Light: Science & Applications.

[17]  Wolfgang Freude,et al.  40 GBd 16QAM Signaling at 160 Gb/s in a Silicon-Organic Hybrid Modulator , 2015, Journal of Lightwave Technology.

[18]  Alireza Samani,et al.  Silicon Photonic Segmented Modulator-Based Electro-Optic DAC for 100 Gb/s PAM-4 Generation , 2015, IEEE Photonics Technology Letters.

[19]  Wolfgang Freude,et al.  Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) Integration , 2016 .

[20]  Wolfgang Freude,et al.  Silicon-plasmonic internal-photoemission detector for 40 Gbit/s data reception , 2016 .

[21]  John D. Siirola,et al.  Operation of high-speed silicon photonic micro-disk modulators at cryogenic temperatures , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[22]  Ruimin Xu,et al.  Structure–function relationship exploration for enhanced thermal stability and electro-optic activity in monolithic organic NLO chromophores , 2016 .

[23]  Juerg Leuthold,et al.  Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design. , 2017, Optics express.

[24]  Wolfgang Freude,et al.  Silicon-Organic Hybrid (SOH) Mach-Zehnder Modulators for 100 Gbit/s on-off Keying , 2017, Scientific Reports.

[25]  Wolfgang Freude,et al.  Silicon-organic hybrid (SOH) modulators for intensity-modulation / direct-detection links with line rates of up to 120 Gbit/s. , 2017, Optics express.

[26]  David B. Cole,et al.  Coherent solid-state LIDAR with silicon photonic optical phased arrays. , 2017, Optics letters.

[27]  Hiroshi Fukuda,et al.  Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator , 2017, Nature Photonics.

[28]  M. Chagnon,et al.  Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator. , 2017, Optics express.

[29]  Laura Mančinska,et al.  Multidimensional quantum entanglement with large-scale integrated optics , 2018, Science.

[30]  Graham D. Marshall,et al.  Large-scale silicon quantum photonics implementing arbitrary two-qubit processing , 2018, Nature Photonics.

[31]  P. Winzer,et al.  Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages , 2018, Nature.

[32]  M. Lauermann,et al.  Electrically packaged silicon-organic hybrid (SOH) I/Q-modulator for 64 GBd operation. , 2018, Optics express.

[33]  Wolfgang Freude,et al.  Demonstration of long-term thermally stable silicon-organic hybrid modulators at 85 °C. , 2018, Optics express.

[34]  Yuchao Li,et al.  Optical Energy Transfer from Photonic Nanowire to Plasmonic Nanowire , 2018 .

[35]  Jeremy Witzens,et al.  High-Speed Silicon Photonics Modulators , 2018, Proceedings of the IEEE.

[36]  M. Lauermann,et al.  Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator , 2017, Optica.

[37]  C Koos,et al.  Coherent modulation up to 100 GBd 16QAM using silicon-organic hybrid (SOH) devices. , 2018, Optics express.

[38]  Hermann Massler,et al.  500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics , 2018, APL Photonics.

[39]  J. Bowers,et al.  Characterization of heterogeneous InP-on-Si optical modulators operating between 77 K and room temperature , 2019, APL Photonics.

[40]  Juerg Leuthold,et al.  Plasmonic IQ modulators with attojoule per bit electrical energy consumption , 2019, Nature Communications.

[41]  Thomas Zwick,et al.  THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator , 2018, Nature Photonics.

[42]  Lukas Czornomaz,et al.  A BaTiO3-Based Electro-Optic Pockels Modulator Monolithically Integrated on an Advanced Silicon Photonics Platform , 2019, Journal of Lightwave Technology.

[43]  Yuang Wang,et al.  Valley optomechanics in a monolayer semiconductor , 2019, Nature Photonics.

[44]  Munehiko Nagatani,et al.  80-GHz Bandwidth and 1.5-V Vπ InP-Based IQ Modulator , 2020, Journal of Lightwave Technology.

[45]  S. Randel,et al.  Verified equivalent-circuit model for slot-waveguide modulators. , 2019, Optics express.

[46]  Bruce H. Robinson,et al.  Ultrahigh Electro-Optic Coefficients, High Index of Refraction, and Long-Term Stability from Diels–Alder Cross-Linkable Binary Molecular Glasses , 2020, Chemistry of Materials.