Toward a mobile autonomous robotic system for Mars exploration

Abstract The paper deals with the results obtained up to now in the design and realization of mobile platforms, wheeled and legged ones, for autonomous deployment in unknown and hostile environments: a work developed in the framework of a project supported by the Italian Space Agency. The paper is focused on the description of the hierarchical architecture adopted for the planning, the supervision and the control of their mobility. Experimental results validate the solutions proposed, evidencing the capabilities of the platforms to explore environments in presence of irregular ground shape and obstacles of different dimensions.

[1]  P. Arena,et al.  Reaction-diffusion CNN algorithms to generate and control artificial locomotion , 1999 .

[2]  Georges Bastin,et al.  Structural properties and classification of kinematic and dynamic models of wheeled mobile robots , 1996, IEEE Trans. Robotics Autom..

[3]  Ümit Özgüner,et al.  Design of knowledge-rich hierarchical controllers for large functional systems , 1990, IEEE Trans. Syst. Man Cybern..

[4]  Luigi Fortuna,et al.  Attitude control in walking hexapod robots: an analogic spatio-temporal approach , 2002, Int. J. Circuit Theory Appl..

[5]  P. Arena,et al.  Analog cellular locomotion control of hexapod robots , 2002 .

[6]  Luigi Fortuna,et al.  A CNN-based experimental frame for patterns and autowaves , 1998 .

[7]  D. Normand-Cyrot,et al.  An introduction to motion planning under multirate digital control , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[8]  Alfred M. Bruckstein,et al.  Two-dimensional robot navigation among unknown stationary polygonal obstacles , 1993, IEEE Trans. Robotics Autom..

[9]  L.O. Chua,et al.  Cellular neural networks , 1993, 1988., IEEE International Symposium on Circuits and Systems.

[10]  Tamás Roska,et al.  The CNN universal machine: an analogic array computer , 1993 .

[11]  Luigi Fortuna,et al.  Multi-template approach to realize central pattern generators for artificial locomotion control , 2002, Int. J. Circuit Theory Appl..

[12]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[13]  Panos J. Antsaklis,et al.  An introduction to intelligent and autonomous control , 1993 .

[14]  Salvatore Monaco,et al.  Digital control through finite feedback discretizability , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[15]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[16]  James S. Albus,et al.  Outline for a theory of intelligence , 1991, IEEE Trans. Syst. Man Cybern..

[17]  Luigi Fortuna,et al.  Realization of a Reaction-Diffusion CNN Algorithm for Locomotion Control in an Hexapode Robot , 1999, J. VLSI Signal Process..

[18]  Can Isik,et al.  Pilot level of a hierarchical controller for an unmanned mobile robot , 1988, IEEE J. Robotics Autom..

[19]  Tamás Roska,et al.  The CNN universal machine , 1993 .

[20]  Pedro U. Lima,et al.  Intelligent controllers as hierarchical stochastic automata , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[21]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[22]  Moëz Cherif Kinodynamic motion planning for all-terrain wheeled vehicles , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).