Tree Structure Sparsity Pattern Guided Convex Optimization for Compressive Sensing of Large-Scale Images

Cost-efficient compressive sensing of large-scale images with quickly reconstructed high-quality results is very challenging. In this paper, we present an algorithm to solve convex optimization via the tree structure sparsity pattern, which can be run in the operator to reduce computation cost and maintain good quality, especially for large-scale images. We also provide convergence analysis and convergence rate analysis for the proposed method. The feasibility of our method is verified through simulations and comparison with the state-of-the-art algorithms.

[1]  Volkan Cevher,et al.  Recipes on hard thresholding methods , 2011, 2011 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[2]  Yin Zhang,et al.  A Fast Algorithm for Sparse Reconstruction Based on Shrinkage, Subspace Optimization, and Continuation , 2010, SIAM J. Sci. Comput..

[3]  James E. Fowler,et al.  Residual Reconstruction for Block-Based Compressed Sensing of Video , 2011, 2011 Data Compression Conference.

[4]  Lawrence Carin,et al.  Exploiting Structure in Wavelet-Based Bayesian Compressive Sensing , 2009, IEEE Transactions on Signal Processing.

[5]  Richard G. Baraniuk,et al.  Kronecker Compressive Sensing , 2012, IEEE Transactions on Image Processing.

[6]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[7]  Junzhou Huang,et al.  Learning with structured sparsity , 2009, ICML '09.

[8]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[9]  James E. Fowler,et al.  Block Compressed Sensing of Images Using Directional Transforms , 2010, 2010 Data Compression Conference.

[10]  Philip Schniter,et al.  Turbo reconstruction of structured sparse signals , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[11]  Trac D. Tran,et al.  Fast and Efficient Compressive Sensing Using Structurally Random Matrices , 2011, IEEE Transactions on Signal Processing.

[12]  Volkan Cevher,et al.  Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.

[13]  Andrzej Cichocki,et al.  Stable, Robust, and Super Fast Reconstruction of Tensors Using Multi-Way Projections , 2014, IEEE Transactions on Signal Processing.

[14]  R.G. Baraniuk,et al.  Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.

[15]  Yin Zhang,et al.  Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..

[16]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[17]  James E. Fowler,et al.  Motion-compensated compressed-sensing reconstruction for dynamic MRI , 2013, 2013 IEEE International Conference on Image Processing.

[18]  Enrico Magli,et al.  Smoothness-constrained image recovery from block-based random projections , 2013, 2013 IEEE 15th International Workshop on Multimedia Signal Processing (MMSP).

[19]  Coralia Cartis,et al.  An Exact Tree Projection Algorithm for Wavelets , 2013, IEEE Signal Processing Letters.

[20]  Volkan Cevher,et al.  Low-Dimensional Models for Dimensionality Reduction and Signal Recovery: A Geometric Perspective , 2010, Proceedings of the IEEE.

[21]  Alan C. Bovik,et al.  Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures , 2009, IEEE Signal Processing Magazine.

[22]  Andrzej Cichocki,et al.  Computing Sparse Representations of Multidimensional Signals Using Kronecker Bases , 2013, Neural Computation.

[23]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[24]  Wotao Yin,et al.  On the convergence of an active-set method for ℓ1 minimization , 2012, Optim. Methods Softw..

[25]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[26]  Amir Averbuch,et al.  Adaptive Compressed Image Sensing Using Dictionaries , 2012, SIAM J. Imaging Sci..

[27]  Michael Ulbrich,et al.  A Semismooth Newton Method with Multidimensional Filter Globalization for l1-Optimization , 2014, SIAM J. Optim..

[28]  Lawrence Carin,et al.  Tree-Structured Compressive Sensing With Variational Bayesian Analysis , 2010, IEEE Signal Processing Letters.

[29]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[30]  Hong Sun,et al.  Bayesian compressive sensing for cluster structured sparse signals , 2012, Signal Process..

[31]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[32]  Jared Tanner,et al.  Conjugate Gradient Iterative Hard Thresholding: Observed Noise Stability for Compressed Sensing , 2015, IEEE Transactions on Signal Processing.

[33]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[34]  Volkan Cevher,et al.  Group-Sparse Model Selection: Hardness and Relaxations , 2013, IEEE Transactions on Information Theory.

[35]  Lu Gan Block Compressed Sensing of Natural Images , 2007, 2007 15th International Conference on Digital Signal Processing.

[36]  Dan Schonfeld,et al.  Generalized tensor compressive sensing , 2013, 2013 IEEE International Conference on Multimedia and Expo (ICME).

[37]  Anastasios Kyrillidis,et al.  Multi-Way Compressed Sensing for Sparse Low-Rank Tensors , 2012, IEEE Signal Processing Letters.

[38]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[39]  Chun-Shien Lu,et al.  Fast compressive sensing of high-dimensional signals with tree-structure sparsity pattern , 2014, 2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP).

[40]  Massimo Fornasier,et al.  Compressive Sensing , 2015, Handbook of Mathematical Methods in Imaging.

[41]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.