The normalized Laplacian spectrum of subdivisions of a graph

Determining and analyzing the spectra of graphs is an important and exciting research topic in mathematics science and theoretical computer science. The eigenvalues of the normalized Laplacian of a graph provide information on its structural properties and also on some relevant dynamical aspects, in particular those related to random walks. In this paper, we give the spectra of the normalized Laplacian of iterated subdivisions of simple connected graphs. As an example of application of these results we find the exact values of their multiplicative degree-Kirchhoff index, Kemeny's constant and number of spanning trees.

[1]  László Lovász,et al.  Random Walks on Graphs: A Survey , 1993 .

[2]  J. Hunter The Role of Kemeny's Constant in Properties of Markov Chains , 2012, 1208.4716.

[3]  Dragoš Cvetković,et al.  GRAPH SPECTRAL TECHNIQUES IN COMPUTER SCIENCES , 2012 .

[4]  John G. Kemeny,et al.  Finite Markov chains , 1960 .

[5]  Xiao-Dong Zhang,et al.  The smallest eigenvalue for reversible Markov chains , 2004 .

[6]  Zhongzhi Zhang,et al.  Spectrum of walk matrix for Koch network and its application. , 2015, The Journal of chemical physics.

[7]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[8]  Guanrong Chen,et al.  Random walks on weighted networks. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Douglas J. Klein,et al.  Resistance distance-based graph invariants of subdivisions and triangulations of graphs , 2014, Discret. Appl. Math..

[10]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[11]  Tomoyuki Shirai,et al.  The spectrum of infinite regular line graphs , 1999 .

[12]  Van H. Vu,et al.  Sparse random graphs: Eigenvalues and eigenvectors , 2010, Random Struct. Algorithms.

[13]  Fuji Zhang,et al.  Resistance distance and the normalized Laplacian spectrum , 2007, Discret. Appl. Math..

[14]  C. von Ferber,et al.  Dynamics of Vicsek fractals, models for hyperbranched polymers. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Alexander Teplyaev,et al.  Vibration modes of 3n-gaskets and other fractals , 2008 .

[16]  S. Butler Algebraic aspects of the normalized Laplacian , 2016 .

[17]  Dragoš Cvetković,et al.  Graph spectra in Computer Science , 2011 .

[18]  Anirban Dasgupta,et al.  Spectral analysis of random graphs with skewed degree distributions , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[19]  Guantao Chen,et al.  An Interlacing Result on Normalized Laplacians , 2005, SIAM J. Discret. Math..

[20]  A. Teplyaev Spectral Analysis on Infinite Sierpiński Gaskets , 1998 .

[21]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[22]  M. Randic,et al.  Resistance distance , 1993 .

[23]  Daniel A. Spielman,et al.  Spectral Graph Theory and its Applications , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[24]  S. Gaubert,et al.  Perron–Frobenius theorem for nonnegative multilinear forms and extensions , 2009, 0905.1626.

[25]  Mark Levene,et al.  Kemeny's Constant and the Random Surfer , 2002, Am. Math. Mon..

[26]  Zhongzhi Zhang,et al.  Full eigenvalues of the Markov matrix for scale-free polymer networks. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  R. Häggkvist,et al.  Bipartite graphs and their applications , 1998 .

[28]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[29]  Douglas J. Klein,et al.  Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances , 1994 .