Packing and Covering a Polygon with Geodesic Disks

Given a polygon $P$, for two points $s$ and $t$ contained in the polygon, their \emph{geodesic distance} is the length of the shortest $st$-path within $P$. A \emph{geodesic disk} of radius $r$ centered at a point $v \in P$ is the set of points in $P$ whose geodesic distance to $v$ is at most $r$. We present a polynomial time $2$-approximation algorithm for finding a densest geodesic unit disk packing in $P$. Allowing arbitrary radii but constraining the number of disks to be $k$, we present a $4$-approximation algorithm for finding a packing in $P$ with $k$ geodesic disks whose minimum radius is maximized. We then turn our focus on \emph{coverings} of $P$ and present a $2$-approximation algorithm for covering $P$ with $k$ geodesic disks whose maximal radius is minimized. Furthermore, we show that all these problems are $\mathsf{NP}$-hard in polygons with holes. Lastly, we present a polynomial time exact algorithm which covers a polygon with two geodesic disks of minimum maximal radius.

[1]  David Eppstein,et al.  Faster construction of planar two-centers , 1997, SODA '97.

[2]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[3]  Subhash Suri,et al.  An Optimal Algorithm for Euclidean Shortest Paths in the Plane , 1999, SIAM J. Comput..

[4]  Ivo Vigan,et al.  Point Set Isolation Using Unit Disks is NP-complete , 2013, ArXiv.

[5]  Jeong Hyun Kang,et al.  Combinatorial Geometry , 2006 .

[6]  David S. Johnson,et al.  The Rectilinear Steiner Tree Problem is NP Complete , 1977, SIAM Journal of Applied Mathematics.

[7]  Micha Sharir,et al.  On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  Micha Sharir A Near-Linear Algorithm for the Planar 2-Center Problem , 1997, Discret. Comput. Geom..

[10]  Kyung-Yong Chwa,et al.  Two-center problems for a convex polygon , 1998 .

[11]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[12]  Takuro Fukunaga,et al.  An Approximation Algorithm for Locating Maximal Disks within Convex Polygons , 2011, Int. J. Comput. Geom. Appl..

[13]  C. A. Rogers,et al.  Packing and Covering , 1964 .

[14]  Said Salhi,et al.  Facility Location: A Survey of Applications and Methods , 1996 .

[15]  Erik D. Demaine,et al.  The Open Problems Project , 2007 .

[16]  Jeffrey O. Kephart,et al.  Robotic mapping and monitoring of data centers , 2011, 2011 IEEE International Conference on Robotics and Automation.

[17]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[18]  Jeffrey O. Kephart,et al.  Towards data center self-diagnosis using a mobile robot , 2011, ICAC '11.

[19]  L. Tóth Lagerungen in der Ebene auf der Kugel und im Raum , 1953 .

[20]  John Iacono,et al.  Packing identical simple polygons is NP-hard , 2012, ArXiv.

[21]  Tomás Feder,et al.  Optimal algorithms for approximate clustering , 1988, STOC '88.

[22]  D. T. Lee,et al.  Higher-Order Geodesic Voronoi Diagrams in a Polygonal Domain with Holes , 2013, SODA.

[23]  Tomaso Aste,et al.  The pursuit of perfect packing , 2000 .

[24]  Antonio Córdoba,et al.  Lattice points , 1997 .

[25]  Peter Gritzmann,et al.  Finite Packing and Covering , 1993 .

[26]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[27]  János Pach,et al.  Combinatorial Geometry , 2012 .

[28]  Boris Aronov On the geodesic Voronoi diagram of point sites in a simple polygon , 1987, SCG '87.

[29]  Ameneh Moharerhaye Esfahani,et al.  Obnoxious Facility Location , 2009 .

[30]  Subhash Suri,et al.  Matrix searching with the shortest path metric , 1993, SIAM J. Comput..

[31]  Leonidas J. Guibas,et al.  Linear time algorithms for visibility and shortest path problems inside simple polygons , 2011, SCG '86.

[32]  Jun Luo,et al.  Geodesic Disks and Clustering in a Simple Polygon , 2007, Int. J. Comput. Geom. Appl..

[33]  G. Tóth,et al.  A Survey of Recent Results in the Theory of Packing and Covering , 1993 .

[34]  Robert J. Fowler,et al.  Optimal Packing and Covering in the Plane are NP-Complete , 1981, Inf. Process. Lett..

[35]  G. Toussaint Computing geodesic properties inside a simple polygon , 1989 .

[36]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[37]  Teofilo F. GONZALEZ,et al.  Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..

[38]  F. Thorne,et al.  Geometry of Numbers , 2017, Algebraic Number Theory.

[39]  Erhan Erkut,et al.  Analytical models for locating undesirable facilities , 1989 .

[40]  Goos Kant,et al.  A Better Heuristic for Orthogonal Graph Drawings , 1994, ESA.

[41]  Lee J. White,et al.  A Maxmin Location Problem , 1980, Oper. Res..

[42]  Károly J. Böröczky,et al.  Finite Packing and Covering: Arrangements in Dimension Two , 2004 .

[43]  G. Tóth,et al.  Packing and Covering with Convex Sets , 1993 .