Multi-time-step explicit–implicit method for non-linear structural dynamics

We present a method with domain decomposition to solve time-dependent non-linear problems. This method enables arbitrary numeric schemes of the Newmark family to be coupled with different time steps in each subdomain: this coupling is achieved by prescribing continuity of velocities at the interface. We are more specifically interested in the coupling of implicit/explicit numeric schemes taking into account material and geometric non-linearities. The interfaces are modelled using a dual Schur formulation where the Lagrange multipliers represent the interfacial forces. Unlike the continuous formulation, the discretized formulation of the dynamic problem is unable to verify simultaneously the continuity of displacements, velocities and accelerations at the interfaces. We show that, within the framework of the Newmark family of numeric schemes, continuity of velocities at the interfaces enables the definition of an algorithm which is stable for all cases envisaged. To prove this stability, we use an energy method, i.e. a global method over the whole time interval, in order to verify the algorithms properties. Then, we propose to extend this to non-linear situations in the following cases: implicit linear/explicit non-linear, explicit non-linear/explicit non-linear and implicit non-linear/explicit non-linear. Finally, we present some examples showing the feasibility of the method. Copyright © 2001 John Wiley & Sons, Ltd.

[1]  C. Farhat,et al.  A scalable Lagrange multiplier based domain decomposition method for time‐dependent problems , 1995 .

[2]  I. Miranda,et al.  Implicit-Explicit Finite Elements in Nonlinear Transient Analysis , 1979 .

[3]  S. Caddemi,et al.  Convergence of the Newton‐Raphson algorithm in elastic‐plastic incremental analysis , 1991 .

[4]  Patrick Smolinski,et al.  Procedures for multi-time step integration of element-free Galerkin methods for diffusion problems , 2000 .

[5]  Carlos A. Felippa,et al.  A direct flexibility method , 1997 .

[6]  Carlos A. Felippa,et al.  A variational principle for the formulation of partitioned structural systems , 2000 .

[7]  G. L. Goudreau,et al.  Evaluation of numerical integration methods in elastodynamics , 1973 .

[8]  Ted Belytschko,et al.  Multi-time-step integration using nodal partitioning , 1988 .

[9]  T. Hughes,et al.  An improved implicit-explicit time integration method for structural dynamics , 1989 .

[10]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[11]  T. Belytschko,et al.  Stability of an explicit multi-time step integration algorithm for linear structural dynamics equations , 1996 .

[12]  G. G. Chen,et al.  A mixed explicit‐implicit (EI) algorithm for creep stress analysis , 1988 .

[13]  Carlos A. Felippa,et al.  DIRECT TIME INTEGRATION METHODS IN NONLINEAR STRUCTURAL DYNAMICS , 1979 .

[14]  Thomas J. R. Hughes,et al.  Implicit-explicit finite elements in nonlinear transient analysis , 1979 .

[15]  Ted Belytschko,et al.  Multi-Stepping Implicit-Explicit Procedures in Transient Analysis , 1984 .

[16]  T. Belytschko,et al.  Stability of explicit‐implicit mesh partitions in time integration , 1978 .

[17]  W. L. Wood,et al.  A unified set of single step algorithms. Part 1: General formulation and applications , 1984 .

[18]  Wing Kam Liu,et al.  Stability of mixed time integration schemes for transient thermal analysis , 1982 .

[19]  Ali Kaveh,et al.  Domain decomposition for finite element analysis , 1997 .

[20]  Thomas J. R. Hughes,et al.  Implicit-Explicit Finite Elements in Transient Analysis: Stability Theory , 1978 .

[21]  Charbel Farhat,et al.  On a component mode synthesis method and its application to incompatible substructures , 1994 .

[22]  Thomas J. R. Hughes,et al.  IMPLICIT-EXPLICIT FINITE ELEMENTS IN TRANSIENT ANALYSIS: IMPLEMENTATION AND NUMERICAL EXAMPLES. , 1978 .

[23]  Elisa D. Sotelino,et al.  A concurrent explicit-implicit algorithm in structural dynamics , 1994 .

[24]  Ted Belytschko,et al.  Implementation of mixed time integration techniques on a vectorized computer with shared memory , 1992 .

[25]  Ted Belytschko,et al.  Mixed-time implicit-explicit finite elements for transient analysis , 1982 .

[26]  T. J.R. Hughes,et al.  ANALYSIS OF TRANSIENT ALGORITHMS WITH PARTICULAR REFERENCE TO STABILITY BEHAVIOR. , 1983 .

[27]  Michael Ortiz,et al.  An analysis of a new class of integration algorithms for elastoplastic constitutive relations , 1986 .

[28]  W. Daniel Analysis and implementation of a new constant acceleration subcycling algorithm , 1997 .

[29]  David Dureisseix,et al.  Comparison of multi-level approaches in domain decomposition for structural analysis , 1998 .

[30]  Ted Belytschko,et al.  Mixed methods for time integration , 1979 .

[31]  O. C. Zienkiewicz A new look at the newmark, houbolt and other time stepping formulas. A weighted residual approach , 1977 .

[32]  Wing Kam Liu,et al.  Stability of multi-time step partitioned integrators for first-order finite element systems , 1985 .

[33]  Ted Belytschko,et al.  Stability analysis of elemental explicit-implicit partitions by Fourier methods , 1992 .