3D FINITE ELEMENT MODELLING OF CHIP FORMATION PROCESS FOR MACHINING INCONEL 718: COMPARISON OF FE SOFTWARE PREDICTIONS
暂无分享,去创建一个
I. Llanos | T. Özel | P. Arrazola | I. Llanos | T. Ozel | J. Soriano | T. Ozel | J. Soriano | P.-J. Arrazola | Iñigo Llanos | Josu Soriano
[1] M. A. Mannan,et al. Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools , 2004 .
[2] E. Ezugwu. Key improvements in the machining of difficult-to-cut aerospace superalloys , 2005 .
[3] Vadim V. Silberschmidt,et al. Thermomechanical finite element simulations of ultrasonically assisted turning , 2005 .
[4] Experimental and Finite Element Investigations on the Influence of Tool Edge Radius in Machining Nickel-Based Alloy , 2009 .
[5] D. Agard,et al. Microtubule nucleation by γ-tubulin complexes , 2011, Nature Reviews Molecular Cell Biology.
[6] M. E. Merchant. Mechanics of the Metal Cutting Process. II. Plasticity Conditions in Orthogonal Cutting , 1945 .
[7] B. L. Josefson,et al. Modelling chip formation of alloy 718 , 2009 .
[8] M. A. Elbestawi,et al. A modified time-efficient FE approach for predicting machining-induced residual stresses , 2008 .
[9] David K. Aspinwall,et al. Three-dimensional finite element modelling of high-speed milling of Inconel 718 , 2004 .
[10] A. Moufki,et al. A new thermomechanical model of cutting applied to turning operations. Part II. Parametric study , 2005 .
[11] C. Guo,et al. A finite element modeling approach to predicting white layer formation in nickel superalloys , 2009 .
[12] Tuğrul Özel,et al. Journal of Materials Processing Technology Computational Modelling of 3d Turning: Influence of Edge Micro-geometry on Forces, Stresses, Friction and Tool Wear in Pcbn Tooling , 2022 .
[13] Suhas S. Joshi,et al. Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718 , 2008 .
[14] D. Mynors,et al. Representing the superplasticity of Inconel 718 , 2004 .
[15] F. Girot,et al. A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti–6Al–4V , 2008 .
[16] Eckart Uhlmann,et al. Finite Element Modeling and Cutting Simulation of Inconel 718 , 2007 .
[17] A. H. Adibi-Sedeh,et al. UNDERSTANDING OF FINITE ELEMENT ANALYSIS RESULTS UNDER THE FRAMEWORK OF OXLEY'S MACHINING MODEL , 2005 .
[18] Mahmudur Rahman,et al. The machinability of inconel 718 , 1997 .
[19] Erol Zeren,et al. FINITE ELEMENT MODELING OF STRESSES INDUCED BY HIGH SPEED MACHINING WITH ROUND EDGE CUTTING TOOLS , 2005 .
[20] P.L.B. Oxley,et al. An analysis for orthogonal cutting with restricted tool-chip contact , 1962 .
[21] Vadim V. Silberschmidt,et al. Finite element analysis of ultrasonically assisted turning of Inconel 718 , 2004 .
[22] Yuebin Guo,et al. 3D FEA Modeling of Hard Turning , 2002 .
[23] E. Uhlmann,et al. Simulation der Spansegmentierung beim Hochgeschwindigkeits-Zerspanen unter Berücksichtigung duktiler Schädigung , 2003 .
[24] Í. Urresti,et al. FINITE ELEMENT MODELING OF OBLIQUE MACHINING USING AN ARBITRARY LAGRANGIAN–EULERIAN FORMULATION , 2009 .
[25] Keith Ridgway,et al. Workpiece Surface Integrity and Tool Life Issues When Turning Inconel 718™ Nickel Based Superalloy , 2004 .
[26] Jeffrey J. DeMange,et al. Effects of material microstructure on blunt projectile penetration of a nickel-based super alloy , 2009 .
[27] M. A. Mannan,et al. Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools , 2004 .
[28] Ranga Komanduri,et al. Thermal modeling of the metal cutting process: Part I — Temperature rise distribution due to shear plane heat source , 2000 .
[29] Günter Warnecke,et al. A new Thermo-viscoplastic Material Model for Finite-Element-Analysis of the Chip Formation Process , 2002 .
[30] G. Boothroyd. Temperatures in Orthogonal Metal Cutting , 1963 .
[31] Vadim V. Silberschmidt,et al. Finite element simulations of ultrasonically assisted turning , 2003 .
[32] Tuğrul Özel,et al. Predictive Analytical and Thermal Modeling of Orthogonal Cutting Process—Part I: Predictions of Tool Forces, Stresses, and Temperature Distributions , 2006 .
[33] M. Touratier,et al. An ALE three-dimensional model of orthogonal, oblique metal cutting processes , 1998 .
[34] Tuğrul Özel,et al. Finite element modeling the influence of edge roundness on the stress and temperature fields induced by high-speed machining , 2007 .
[35] R. W. Evans,et al. Design of a creep resistant nickel base superalloy for power plant applications: Part 3 - Experimental results , 2003 .
[36] N. Zorev. Metal cutting mechanics , 1966 .
[37] M. Ortiz,et al. Modelling and simulation of high-speed machining , 1995 .
[38] T. Özel,et al. Numerical modelling of 3-D hard turning using Arbitrary Eulerian Lagrangian finite element method , 2008 .
[39] Hossam A. Kishawy,et al. An exploration of friction models for the chip–tool interface using an Arbitrary Lagrangian–Eulerian finite element model , 2008 .
[40] I. S. Jawahir,et al. Analysis of residual stresses induced by dry turning of difficult-to-machine materials , 2008 .
[41] Z. Gao,et al. Strain-rate hardening behavior of superalloy IN718 , 1997 .
[42] G. D. Davis,et al. A numerical method for calculating temperature distributions in machining, from force and shear angle measurements , 1976 .
[43] J. M. Pereira,et al. Effects of Heat Treatment on the Ballistic Impact Properties of Inconel 718 for Jet Engine Fan Containment Applications , 2013 .
[44] Vadim V. Silberschmidt,et al. Analysis of material response to ultrasonic vibration loading in turning Inconel 718 , 2006 .
[45] Elisabetta Ceretti,et al. Turning simulations using a three-dimensional FEM code , 2000 .
[46] A. Moufki,et al. A new thermomechanical model of cutting applied to turning operations. Part I. Theory , 2005 .