Robust bayesian inference in elliptical regression models

Broadening the stochastic assumptions on the error terms of regression models was prompted by the analysis of linear multivariate t models in Zellner (1976). We consider a possible non-linear regression model under any multivariate elliptical data density, and examine Bayesian posterior and productive results. The latter are shown to be robust with respect to the specific choice of a sampling density within this elliptical class. In particular, sufficient conditions for such model robustness are that we single out a precision factor T2 on which we can specify an improper prior density. Apart from the posterior distribution of this nuisance parameter T 2, the entire analysis will then be completely unaffected by departures from Normality. Similar results hold in finite mixtures of such elliptical densities, which can be used to average out specification uncertainty.

[1]  Jean-Pierre Florens,et al.  Elements of Bayesian Statistics , 1990 .

[2]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[3]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[4]  J. F. Wagner,et al.  Elliptically symmetric distributions , 1968, IEEE Trans. Inf. Theory.

[5]  Mark F. J. Steel,et al.  Posterior inference on the degrees of freedom parameter in multivariate-t regression models , 1991 .

[6]  Jean-François Richard,et al.  On the evaluation of poly-t density functions , 1980 .

[7]  Jacques H. Dreze,et al.  Bayesian regression analysis using poly-t densities , 1977 .

[8]  J. Osiewalski A note on Bayesian inference in a regression model with elliptical errors , 1991 .

[9]  B. M. Hill,et al.  Foundations for the Theory of Least Squares , 1969 .

[10]  S. Chib,et al.  Bayes prediction in regressions with elliptical errors , 1988 .

[11]  D. Poirier Frequentist and Subjectivist Perspectives on the Problems of Model Building in Economics , 1988 .

[12]  A. Zellner Bayesian and Non-Bayesian Analysis of the Regression Model with Multivariate Student- t Error Terms , 1976 .

[13]  M. R. Novick,et al.  PLU Robust Bayesian Decision Theory: Point Estimation , 1980 .

[14]  Michel Mouchart,et al.  Conditioning in dynamic models , 1985 .

[15]  Jacques H. Dreze,et al.  BAYESIAN ANALYSIS OF SIMULTANEOUS EQUATION SYSTEMS , 1983 .

[16]  M. West Outlier Models and Prior Distributions in Bayesian Linear Regression , 1984 .

[17]  S. R. Jammalamadaka,et al.  Bayes prediction in the linear model with spherically symmetric errors , 1987 .

[18]  Dale J. Poirier,et al.  A Bayesian View of Nominal Money and Real Output through a New Classical Macroeconomic Window , 1991 .

[19]  W. J. Hall,et al.  Approximating Priors by Mixtures of Natural Conjugate Priors , 1983 .

[20]  D. Freedman,et al.  On the consistency of Bayes estimates , 1986 .

[21]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[22]  G. Simons,et al.  On the theory of elliptically contoured distributions , 1981 .

[23]  B. V. Praag,et al.  Elliptical multivariate analysis , 1989 .