Hydrothermal synthesis of mesoporous metal oxide arrays with enhanced properties for electrochemical energy storage

Abstract Mesoporous nanowall NiO arrays are prepared by a facile hydrothermal synthesis method with a following annealing process. The NiO nanowall shows continuous mesopores ranging from 5 to 10 nm and grows vertically on the substrate forming a porous net-like structure with macropores of 20–300 nm. A plausible mechanism is proposed for the growth of mesoporous nanowall NiO arrays. As cathode material of pseudocapacitors, the as-prepared mesoporous nanowall NiO arrays show good pseudocapacitive performances with a high capacitance of 600 F g −1 at 2 A g −1 and impressive high-rate capability with a specific capacitance of 338 F g −1 at 40 A g −1 . In addition, the mesoporous nanowall NiO arrays possess good cycling stability. After 6000 cycles at 2 A g −1 , a high capacitance of 660 F g −1 is attained, and no obvious degradation is observed. The good electrochemical performance is attributed to its highly porous morphology, which provides large reaction surface and short ion diffusion paths, leading to enhanced electrochemical properties.

[1]  W. Shi,et al.  Synthesis of polypyrrole wrapped graphene hydrogels composites as supercapacitor electrodes , 2013 .

[2]  Mao-Sung Wu,et al.  Nickel oxide/hydroxide nanoplatelets synthesized by chemical precipitation for electrochemical capacitors , 2008 .

[3]  W. Su,et al.  Preparation and electrochemical characterization of NiO nanostructure-carbon nanowall composites grown on carbon cloth , 2012 .

[4]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[5]  C. Lokhande,et al.  Simple route for the synthesis of supercapacitive Co–Ni mixed hydroxide thin films , 2012 .

[6]  Jian Jiang,et al.  Direct synthesis of porous NiO nanowall arrays on conductive substrates for supercapacitor application , 2011 .

[7]  G. Muralidharan,et al.  Effect of annealing temperature on the supercapacitor behaviour of β-V2O5 thin films , 2013 .

[8]  Juan Xu,et al.  Microwave-incorporated hydrothermal synthesis of urchin-like Ni(OH)2–Co(OH)2 hollow microspheres and their supercapacitor applications , 2013 .

[9]  L. Kong,et al.  Co0.56Ni0.44 Oxide Nanoflake Materials and Activated Carbon for Asymmetric Supercapacitor , 2010 .

[10]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[11]  Xianzhong Sun,et al.  Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications , 2013 .

[12]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[13]  H. Duan,et al.  Facile synthesis of ZnWO4 nanowall arrays on Ni foam for high performance supercapacitors , 2014 .

[14]  G. Muralidharan,et al.  Nanostructured nickel doped β-V2O5 thin films for supercapacitor applications , 2013 .

[15]  Yehui Zhang,et al.  Self-assembled porous NiCo2O4 hetero-structure array for electrochemical capacitor , 2013 .

[16]  J. Tu,et al.  Mesoporous Co3O4 monolayer hollow-sphere array as electrochemical pseudocapacitor material. , 2011, Chemical communications.

[17]  Mingdeng Wei,et al.  Supercapacitor electrode of hollow spherical V2O5 with a high pseudocapacitance in aqueous solution , 2013 .

[18]  C. Lokhande,et al.  Electrochemical behavior of potentiodynamically deposited cobalt oxyhydroxide (CoOOH) thin films for supercapacitor application , 2012 .

[19]  Huanwen Wang,et al.  One-step strategy to three-dimensional graphene/VO2 nanobelt composite hydrogels for high performance supercapacitors , 2014 .

[20]  Masa-aki Suzuki,et al.  MnO2/carbon nanowall electrode for future energy storage application: effect of carbon nanowall growth period and MnO2 mass loading , 2014 .

[21]  N. C. Fan,et al.  Fabrication of metal oxide nanobranches on atomic-layer-deposited TiO2 nanotube arrays and their application in energy storage. , 2013, Nanoscale.

[22]  Xiaogang Zhang,et al.  Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors , 2006 .

[23]  Hua Zhang,et al.  Graphene‐Based Electrodes , 2012, Advanced materials.

[24]  Chang Liu,et al.  Advanced Materials for Energy Storage , 2010, Advanced materials.

[25]  X. Xia,et al.  Pseudocapacitive properties of electrodeposited porous nanowall Co3O4 film , 2011 .

[26]  J. Tu,et al.  Graphene sheet/porous NiO hybrid film for supercapacitor applications. , 2011, Chemistry.

[27]  Pooi See Lee,et al.  Dodecyl sulfate-induced fast faradic process in nickel cobalt oxide–reduced graphite oxide composite material and its application for asymmetric supercapacitor device , 2012 .

[28]  Hua Zhang,et al.  A new type of porous graphite foams and their integrated composites with oxide/polymer core/shell nanowires for supercapacitors: structural design, fabrication, and full supercapacitor demonstrations. , 2014, Nano letters.

[29]  G. Wallace,et al.  Electrochemically synthesized stretchable polypyrrole/fabric electrodes for supercapacitor , 2013 .

[30]  Xiuli Wang,et al.  Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance , 2011 .

[31]  J. Tu,et al.  Solution synthesis of metal oxides for electrochemical energy storage applications. , 2014, Nanoscale.

[32]  Jianfang Wang,et al.  The simple preparation of birnessite-type manganese oxide with flower-like microsphere morphology and its remarkable capacity retention , 2012 .

[33]  K. Loh,et al.  Electrochemical Double-Layer Capacitance of MoS[sub 2] Nanowall Films , 2007 .

[34]  B. Dunn,et al.  Pseudocapacitive oxide materials for high-rate electrochemical energy storage , 2014 .

[35]  V. Pavlínek,et al.  Controlled synthesis of hierarchical polyaniline nanowires/ordered bimodal mesoporous carbon nanocomposites with high surface area for supercapacitor electrodes , 2013 .

[36]  Xiuli Wang,et al.  High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. , 2012, ACS nano.

[37]  E. Xie,et al.  An overview of carbon materials for flexible electrochemical capacitors. , 2013, Nanoscale.

[38]  Zhiyi Lu,et al.  Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. , 2011, Chemical communications.

[39]  Xiaofen Li,et al.  Progress of electrochemical capacitor electrode materials: A review , 2009 .

[40]  A. De,et al.  Polypyrrole-titanium(IV) doped iron(III) oxide nanocomposites: Synthesis, characterization with tunable electrical and electrochemical properties , 2012 .

[41]  J. Tu,et al.  Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material , 2011 .